
A Story about Fontplant Story
Ryszard Kubiak

BachoTEX 2025

1

Goal: Publish GUST Foundry Sources

The fonts (slightly corrected TEX Gyre and Latin Modern)

A documentation: fontplant-story.pdf

2

Literate vs. Narrative

program.web

program.tex

weave

program.p

tangle

program.pdf

pdftex

program.py

story.tex

parse chunks with LUA

story.pdf

ConTeXt

3

A narrative chunk
#+
#: Here is the main function for parsing an OTI file. It reads
#: the entire contents of the file into a string and delegates
#: the task of parsing it to the `parse_oti_text` function.

def parse_oti_file(oti_path: str, with_epses: bool) -> OTI:
 with open(oti_path, 'r') as oti_file:
 txt = oti_file.read()
 return parse_oti_text(txt, with_epses)

#: You may have noticed that the function obtains a Boolean parameter
#: named `with_epses`. This parameter is relevant because Metapost can
#: execute scripts in two modes: one involves evaluating EPS files that
#: represent glyph outlines, while the other entails generating encoding
#: files, without the necessity to process glyph outlines. FontPlant sets
#: the value `with_epses=True` for the function when processing |PFB:| or
#: |OTF:| lines from a bonds file. On the other hand, the value
#: `with_epses=False` is used for generating |ENC| files.
#-

4

Characteristics of chunks

Starts with #+, ends with #-

Doc part: lines starting with #:

Code part: all other lines within the chunk

A sequence of Doc and Code segments

Each chunk has a label

5

Chunks invoked in ConTEXt
\CodeSection{The parsing process as such -- do one thing at a time}

\chunk{oti_lib}{parse_oti_file}
\chunk{oti_lib}{parse_oti_text}
\chunk{oti_lib}{oti_text_to_oti_lines}
\chunk{oti_lib}{fnt-or-gly-line}
\chunk{oti_lib}{oti_lines_to_oti_lines_ast}

6

A chunk in PDF (2024)

7

A chunk in PDF (2025)

8

Programmer's experience

Good: documentation close to code

Documentation influences code

The story is being written only after the program is ready

Python support in vscode (renamings, find occurences)

Need for chunk formatting tools (vscode, Emacs)

9

Author's experience

Spirit of comments in chunks similar to D.E.K's

Dangerous words: two, three, below, above

Also the names of: functions, classes, variables

Overfulls possible as result of long names

Avoid links to the external story

10

Reader's comfort?

Need for Python syntax colouring

Python's self argument problem

Cross references?

Index?

11

ConTEXt user's experience

Nice background and frames for Python snippets

Error messages can be hard to understand:

{\color[darkred] xyz}

mtx-context | fatal error: return code: 1

\color[darkred]{xyz}

And so can be warnings:

2:6: [package: overfull \hbox (35.98022pt too wide)
 in paragraph at lines 211--212]

12

ChatGPT's assistance
#: Two actions occur after the OTF file is generated.
#: First, the generated OTF file is read back into FontForge.
#: This allows us to capture warnings about the contents of
#: the font, which can only be obtained programmatically in
#: this way -- The API of Fontforge does not provide a method
#: to retrieve warnings directly.

Polish up my English in the following Python comment:

#: After the OTF file is generated, two actions occur.
#: First, the file is read back into FontForge, allowing us
#: to capture warnings about the font’s contents. These
#: warnings can only be obtained programmatically in this
#: way, as FontForge’s API does not provide a direct method
#: for retrieving them.

13

ChatGTP on ’ and '
You put the character U+2019 as the apostrophe in the words font's and
FontForges's. Is it your default way of putting this particular character and
not U+0027?

Excellent question — and very sharp observation!

Yes, by default, when I generate natural English text, I usually use the typo­
graphic apostrophe (U+2019 RIGHT SINGLE QUOTATION MARK) rather
than the straight ASCII apostrophe (U+0027 ').

[blah, blah blah]

To sum up:

General English (essays, emails, books): U+2019 (’)

Technical writing (especially code): U+0027 (')

14

Python modules of Fontplant

afm2pfm

font_gen

afm_lib

anchors_lib

fea_lib

apps_lib

pfb_lib

tex_gen

bonds_lib

enc_lib

env_lib

map_gen

runner

fea_lm_lib

fea_tg_lib

exceptions

goa_lib

oti_lib

fea_utils

file_utils

num_utils

text_utils

15

A bonds file
FNT:qagb GRP:tex_gyre SUB:qag GOA:goadb.txt HDR:TG_headers.dat
OTF:texgyreadventor-bold FEA:TG_fea.dat
PFB:qagb
MPE:e-cs TFM:cs-qagb PSE:q-cs PSI:encqcs
MPE:e-qx TFM:qx-qagb PSE:q-qx PSI:encqqx
MPE:e-qxsc TFM:qx-qagb-sc PSE:q-qx-sc PSI:encqqxsc
MAP:qag

16

File generation process
def generate_fonts_required_by_bonds(
 bonds: bonds_lib.Bonds, locs: env_lib.Locations):
 prepare_eps_and_oti_files(bonds, locs)
 eps_oti = oti_lib.parse_oti_file(
 locs.form_eps_oti_file_path(), with_epses=True)
 env = env_lib.Env(bonds, locs, eps_oti)

 if bonds.otf is not None:
 otf_font = OTF_Font(env)
 otf_font.add_generic_font_data_to_ff()
 otf_font.generate_otf_and_friends()
 otf_font.ff_font.close()

 if bonds.pfb is not None:
 pfb_font = PFB_Font(env)
 [...]

17

Generic actions on FontForge font
#: At a general level the data available in the generic
#: `Font` class are provided to FontForge through
#: the following function. It calls several other generic
#: methods, which are defined separately.

def add_generic_font_data_to_ff(self: Font):
 self.set_ff_font_header()
 self.add_glyphs_to_ff_font()
 self.ensure_notdef_eps_in_eps_dir()
 self.assign_attributes_to_ff_glyphs()
 self.add_kerns_to_ff_font()

18

PFB–specific actions on FontForge font
def generate_pfb_and_friends(self: PFB_Font):
 self.put_default_enc_from_oti_into_ff_font()
 self.assign_pfb_names_from_goadb_to_ff_glyphs()
 self.generate_pfb_and_afm_files_with_ff()
 self.postprocess_pfb_and_afm_files()
 self.generate_pfm_file_from_afm()
 self.reopen_pfb_file_for_ff_messages()

19

OTF–specific actions on FontForge font
def generate_otf_and_friends(self: OTF_Font):
 self.assign_otf_names_from_goadb_to_ff_glyphs()
 self.prepare_and_put_features_into_ff_font()
 self.generate_sfd_file_with_ff()
 self.generate_otf_file_with_ff()
 self.reopen_otf_file_for_ff_messages()

20

How far am I with the story

60% ready (2024)

95% ready (2025)

21

Why not 100%

Poor specification of OTF features (GDEF, ...)

FontForge's pecularities

Surprise from Metapost

22

What is missing in Fontplant's Python
(and will stay so?)

Exceptions

Unit tests

Logging

23

What is still missing in Fontplant
Story?

Decent intro

History

People

Ligatures in tg_fea.dat

Latin Modern features lm_fea.py

Overall review

24

What about the narrative style?
Boilerplate texts

Marriage with doc-strings?

