
THE BEASTS OF FONTS
ARE STILL ALIVE
AND KICKING

Bogusław Jackowski
BachoTEX 2025

ENTANGLEMENT MISCONCEPTION

IDIOSYNCRASY RELICS

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

THE BEASTS OF FONTS
ARE STILL ALIVE
AND KICKING

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts:

Latin Modern Math (2011)

TEX Gyre Bonum Math (2014)

TEX Gyre Schola Math (2014)

TEX Gyre Pagella Math (2014)

TEX Gyre Termes Math (2014)

TEX Gyre DejaVu Math (2016)

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts:

Latin Modern Math (2011)

TEX Gyre Bonum Math (2014)

TEX Gyre Schola Math (2014)

TEX Gyre Pagella Math (2014)

TEX Gyre Termes Math (2014)

TEX Gyre DejaVu Math (2016)

Interestingly, none of these fonts – except for Latin Modern, which is
rightly mentioned as a variant of Computer Modern – is listed on the
relevant Wikipedia page:

https://en.wikipedia.org/wiki/Category:Mathematical_OpenType_typefaces

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts.

We weren’t exactly thrilled with the options for typesetting
mathematical formulas available in OpenType fonts (mostly via the
MATH table). Piotr Strzelczyk and I shared our thoughts on the
currently available font technology in the publication “How to make
more than one math OpenType font, or the Beasts of Fonts”.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts.

We weren’t exactly thrilled with the options for typesetting
mathematical formulas available in OpenType fonts (mostly via the
MATH table). Piotr Strzelczyk and I shared our thoughts on the
currently available font technology in the publication “How to make
more than one math OpenType font, or the Beasts of Fonts”.

I believe that Hans and Mikael agreed (to some extent) with our
opinion, as they eventually abandoned the struggle with math fonts
and instead implemented the necessary means for typesetting
math in LuaTEX.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts.

We weren’t exactly thrilled with the options for typesetting
mathematical formulas available in OpenType fonts (mostly via the
MATH table). Piotr Strzelczyk and I shared our thoughts on the
currently available font technology in the publication “How to make
more than one math OpenType font, or the Beasts of Fonts”.

I believe that Hans and Mikael agreed (to some extent) with our
opinion, as they eventually abandoned the struggle with math fonts
and instead implemented the necessary means for typesetting
math in LuaTEX.

And I agree with them, as the beasts of fonts described in our
publication apparently still happily dwell in the Realm of Fonts.

WELCOME TO OUR REALM

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.

Eventually, we decided that before retiring, we should release the
sources for generating the fonts, which also meant providing the
necessary documentation. Ryszard Kubiak took charge of this task.
He rightly suggested that, in order to make the documentation as
clear as possible, we needed to understand the semantics of the fonts.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.

Eventually, we decided that before retiring, we should release the
sources for generating the fonts, which also meant providing the
necessary documentation. Ryszard Kubiak took charge of this task.
He rightly suggested that, in order to make the documentation as
clear as possible, we needed to understand the semantics of the fonts.

And once again, we encountered our old friends – the beasts of fonts
– standing in our way.

Bogusław Jackowski, BachoTEX 2025 (30 IV– 4V)

OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.

Eventually, we decided that before retiring, we should release the
sources for generating the fonts, which also meant providing the
necessary documentation. Ryszard Kubiak took charge of this task.
He rightly suggested that, in order to make the documentation as
clear as possible, we needed to understand the semantics of the fonts.

And once again, we encountered our old friends – the beasts of fonts
– standing in our way. It should be emphasized, however, that not all
of these beasts are giant creatures, but even the smaller monsters –
affectionately called bugs or, as I’d prefer to call them, little beasts
of snags – can still cause significant trouble.

OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.

Eventually, we decided that before retiring, we should release the
sources for generating the fonts, which also meant providing the
necessary documentation. Ryszard Kubiak took charge of this task.
He rightly suggested that, in order to make the documentation as
clear as possible, we needed to understand the semantics of the fonts.

And once again, we encountered our old friends – the beasts of fonts
– standing in our way. It should be emphasized, however, that not all
of these beasts are giant creatures, but even the smaller monsters –
affectionately called bugs or, as I’d prefer to call them, little beasts
of snags – can still cause significant trouble.

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION

As you may recall, the GUST e-Foundry font engine uses METAPOST

to produce EPS text files. These are processed by a set of Python
scripts (Fontplant) and then passed to FontForge to generate binary
OpenType and/or Type 1 PostScript fonts.

Sometimes, there’s a need to take a peek inside a font’s contents.

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION

As you may recall, the GUST e-Foundry font engine uses METAPOST

to produce EPS text files. These are processed by a set of Python
scripts (Fontplant) and then passed to FontForge to generate binary
OpenType and/or Type 1 PostScript fonts.

Sometimes, there’s a need to take a peek inside a font’s contents.

For PostScript Type 1 fonts, there’s a pair of tools – a disassembler
and an assembler (developed by Lee Hetherington) – that convert
the binary form of a font (PFB) into a textual representation and
back again. The important thing here is that the text form is fairly
readable, and more importantly, the assembler can recreate exactly
the same binary file.

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION

As you may recall, the GUST e-Foundry font engine uses METAPOST

to produce EPS text files. These are processed by a set of Python
scripts (Fontplant) and then passed to FontForge to generate binary
OpenType and/or Type 1 PostScript fonts.

Sometimes, there’s a need to take a peek inside a font’s contents.

For PostScript Type 1 fonts, there’s a pair of tools – a disassembler
and an assembler (developed by Lee Hetherington) – that convert
the binary form of a font (PFB) into a textual representation and
back again. The important thing here is that the text form is fairly
readable, and more importantly, the assembler can recreate exactly
the same binary file.

Such reversible conversions are quite standard in the TEX
world – for example, disassembling and assembling tools by DEK
for TFM files (tftopl and pltotf), or by Geoffrey Tobin for DVI files
(dv2dt and dt2dv).

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION: A SETBACK

OpenType fonts can also be converted into a textual format using
FontForge – namely, to the Spline Font Database (SFD) format –
which can then be loaded back into FontForge. However, the SFD file
isn’t particularly readable for humans, and the round-trip conversion
doesn’t exactly meet our expectations.

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION: A SETBACK

OpenType fonts can also be converted into a textual format using
FontForge – namely, to the Spline Font Database (SFD) format –
which can then be loaded back into FontForge. However, the SFD file
isn’t particularly readable for humans, and the round-trip conversion
doesn’t exactly meet our expectations.

METAPOST+

EPSes OTF1 SFD1 OTF2 SFD2 OTF3 SFD3 OTF4 SFD4 OTF5 SFD5 etc.

+FontForge+Python
i.e., Fontplant

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION: A SETBACK

OpenType fonts can also be converted into a textual format using
FontForge – namely, to the Spline Font Database (SFD) format –
which can then be loaded back into FontForge. However, the SFD file
isn’t particularly readable for humans, and the round-trip conversion
doesn’t exactly meet our expectations.

METAPOST+

EPSes OTF1 SFD1 OTF2 SFD2 OTF3 SFD3 OTF4 SFD4 OTF5 SFD5 etc.

+FontForge+Python
i.e., Fontplant

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

Somewhat surprisingly, OTF1/=OTF2/=OTF3=OTF4=OTF5=. . . ,
and SFD1/=SFD2/=SFD3/=SFD4/=SFD5/=.. . It should be
noted that the files SFD3, SFD4, SFD5, etc., differ only
in a comment regarding the XUID. Incidentally, Adobe
stopped using UniqueIDs and XUIDs in their OpenType
CFF fonts at the latest around 2005.

Snaglog: Notes from the Trenches of OpenType

TEXT–BINARY CONVERSION: A SETBACK

OpenType fonts can also be converted into a textual format using
FontForge – namely, to the Spline Font Database (SFD) format –
which can then be loaded back into FontForge. However, the SFD file
isn’t particularly readable for humans, and the round-trip conversion
doesn’t exactly meet our expectations.

METAPOST+

EPSes OTF1 SFD1 OTF2 SFD2 OTF3 SFD3 OTF4 SFD4 OTF5 SFD5 etc.

+FontForge+Python
i.e., Fontplant

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

FontForge
GUI

FontForge
Python script

Somewhat surprisingly, OTF1/=OTF2/=OTF3=OTF4=OTF5=. . . ,
and SFD1/=SFD2/=SFD3/=SFD4/=SFD5/=.. . It should be
noted that the files SFD3, SFD4, SFD5, etc., differ only
in a comment regarding the XUID. Incidentally, Adobe
stopped using UniqueIDs and XUIDs in their OpenType
CFF fonts at the latest around 2005.

a
li
tt
le
be
as
t
od

sn
ug

Snaglog: Notes from the Trenches of OpenType

FEATURES

I’ll now turn to a crucial – yet still poorly documented – component
of OpenType fonts: f e a t u r e s. These structures are specific to
OpenType and have no counterpart in the Type 1 format.

Snaglog: Notes from the Trenches of OpenType

FEATURES

I’ll now turn to a crucial – yet still poorly documented – component
of OpenType fonts: f e a t u r e s. These structures are specific to
OpenType and have no counterpart in the Type 1 format.

FontForge, our main open-source tool for OpenType generation,
reads feature definitions written in a somewhat quirky declarative
language. Introduced in 1998 – two years after the launch of
OpenType – this syntax is also used by Adobe’s Font Development
Kit for OpenType (AFDKO), among others.

Snaglog: Notes from the Trenches of OpenType

FEATURES

I’ll now turn to a crucial – yet still poorly documented – component
of OpenType fonts: f e a t u r e s. These structures are specific to
OpenType and have no counterpart in the Type 1 format.

FontForge, our main open-source tool for OpenType generation,
reads feature definitions written in a somewhat quirky declarative
language. Introduced in 1998 – two years after the launch of
OpenType – this syntax is also used by Adobe’s Font Development
Kit for OpenType (AFDKO), among others.

feature liga {
lookup liga_f_f_l {
sub f f l by f_f_l;
sub f f by f_f;
sub f l by f_l;
} liga_f_f_l;
} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES

I’ll now turn to a crucial – yet still poorly documented – component
of OpenType fonts: f e a t u r e s. These structures are specific to
OpenType and have no counterpart in the Type 1 format.

FontForge, our main open-source tool for OpenType generation,
reads feature definitions written in a somewhat quirky declarative
language. Introduced in 1998 – two years after the launch of
OpenType – this syntax is also used by Adobe’s Font Development
Kit for OpenType (AFDKO), among others.

feature liga {
lookup liga_f_f_l {
sub f f l by f_f_l;
sub f f by f_f;
sub f l by f_l;
} liga_f_f_l;
} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES

I’ll now turn to a crucial – yet still poorly documented – component
of OpenType fonts: f e a t u r e s. These structures are specific to
OpenType and have no counterpart in the Type 1 format.

FontForge, our main open-source tool for OpenType generation,
reads feature definitions written in a somewhat quirky declarative
language. Introduced in 1998 – two years after the launch of
OpenType – this syntax is also used by Adobe’s Font Development
Kit for OpenType (AFDKO), among others.

feature liga {
lookup liga_f_f_l {
sub f f l by f_f_l;
sub f f by f_f;
sub f l by f_l;
} liga_f_f_l;
} liga;

In LuaTEX, one activates a feature
by writing the name of the feature
preceded by a plus in a declaration
of a font, e.g.:

\font\F="[Antykwa-regular]:mode=node;+liga" at 20pt

Snaglog: Notes from the Trenches of OpenType

FEATURES: A NEXT SETBACK

I wasn’t able to figure out how the ‘liga’ feature is represented in
SFD files. Fortunately, FontForge allows you to export a feature file
that uses the syntax mentioned earlier. The result is formally
correct, but pretty unfriendly to humans.

Snaglog: Notes from the Trenches of OpenType

FEATURES: A NEXT SETBACK

I wasn’t able to figure out how the ‘liga’ feature is represented in
SFD files. Fortunately, FontForge allows you to export a feature file
that uses the syntax mentioned earlier. The result is formally
correct, but pretty unfriendly to humans. After some manual
cleaning, we end up with a somewhat surprising result (the same
one you get from another tool for manipulating TrueType and
OpenType fonts, namely, ttx by Just van Rossum).

Snaglog: Notes from the Trenches of OpenType

FEATURES: A NEXT SETBACK

I wasn’t able to figure out how the ‘liga’ feature is represented in
SFD files. Fortunately, FontForge allows you to export a feature file
that uses the syntax mentioned earlier. The result is formally
correct, but pretty unfriendly to humans. After some manual
cleaning, we end up with a somewhat surprising result (the same
one you get from another tool for manipulating TrueType and
OpenType fonts, namely, ttx by Just van Rossum):

feature liga {
lookup liga_f_f_l {
sub f f l by f_f_l;
sub f f by f_f;
sub f l by f_l;
} liga_f_f_l;
} liga; TO OTF

feature liga {
lookup liga_f_f_l {
sub f f by f_f;
sub f f l by f_f_l;
sub f l by f_l;
} liga_f_f_l;
} liga; FROM OTF

Snaglog: Notes from the Trenches of OpenType

FEATURES: A NEXT SETBACK

I wasn’t able to figure out how the ‘liga’ feature is represented in
SFD files. Fortunately, FontForge allows you to export a feature file
that uses the syntax mentioned earlier. The result is formally
correct, but pretty unfriendly to humans. After some manual
cleaning, we end up with a somewhat surprising result (the same
one you get from another tool for manipulating TrueType and
OpenType fonts, namely, ttx by Just van Rossum):

feature liga {
lookup liga_f_f_l {
sub f f l by f_f_l;
sub f f by f_f;
sub f l by f_l;
} liga_f_f_l;
} liga; TO OTF

feature liga {
lookup liga_f_f_l {
sub f f by f_f;
sub f f l by f_f_l;
sub f l by f_l;
} liga_f_f_l;
} liga; FROM OTF

Why on earth was the order of rules messed up? Misconception?
Misimplementation? Ayway, the rule ‘sub f f l by f f l;’
is applied first – as shown in the freshly presented example). But why?

Snaglog: Notes from the Trenches of OpenType

FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied?

Snaglog: Notes from the Trenches of OpenType

FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied? Perhaps
Hans can shed some light on the “order of application” algorithm
implemented in in LuaTEX?

Snaglog: Notes from the Trenches of OpenType

FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied? Perhaps
Hans can shed some light on the “order of application” algorithm
implemented in in LuaTEX?

Microsoft states on their page “Developing OpenType Fonts for
Standard Scripts” that the standard order for applying OpenType
features is as follows:

ccmp – Character composition/decomposition substitution

liga – Standard ligature substitution

clig – Contextual ligature substitution

dist – Distances

kern – Pair kerning

mark – Mark-to-base positioning

mkmk – Mark-to-mark positioning

https://learn.microsoft.com/pl-pl/typography/script-development/standard

Snaglog: Notes from the Trenches of OpenType

FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied?

The order Microsoft seems to recommend is likely only partially
accurate. For instance, the ‘dlig’ (discretionary ligatures) feature
may be applied either before or after the ‘liga’ feature, although one
must admit that the position of ‘dlig’ is not explicitly defined –
actually, ‘dlig’ is not mentioned in Microsoft’s note at all.

feature liga {
sub a a by x;
} liga;
feature dlig {
sub a a by z;
} dlig;

feature dlig {
sub a a by z;
} dlig;
feature liga {
sub a a by x;
} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied?

The order Microsoft seems to recommend is likely only partially
accurate. For instance, the ‘dlig’ (discretionary ligatures) feature
may be applied either before or after the ‘liga’ feature, although one
must admit that the position of ‘dlig’ is not explicitly defined –
actually, ‘dlig’ is not mentioned in Microsoft’s note at all.

feature liga {
sub a a by x;
} liga;
feature dlig {
sub a a by z;
} dlig;

feature dlig {
sub a a by z;
} dlig;
feature liga {
sub a a by x;
} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga;

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga; TO OTF

feature liga {
sub q by x;
sub a a by x;

} liga; FROM OTF

The only plausible explanation for this riddle is a FontForge bug.

Snaglog: Notes from the Trenches of OpenType

FEATURES: A CONUNDRUM

Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
the output of one feature rule can be picked up by a subsequent rule.

feature liga {
sub a a by x;
sub x by q;

} liga; TO OTF

feature liga {
sub a a by x;
sub x by q;

} liga; FROM OTF

Fortunately, the newest FontForge (January 1, 2023) fixed it.

CONCLUSIONS

Given the number of problematic cases we’ve encountered
(and I’m discussing only some of them here), despite our
best efforts, we cannot guarantee that no bugs have slipped
into the fonts we generated.

CONCLUSIONS

Given the number of problematic cases we’ve encountered
(and I’m discussing only some of them here), despite our
best efforts, we cannot guarantee that no bugs have slipped
into the fonts we generated.

What’s worse, we lack tools that would allow for a thorough
inspection of the fonts. By far the most reliable and handy
tool we’ve come across is LuaTEX – but unfortunately, even
that is sometimes not enough.

CONCLUSIONS

Given the number of problematic cases we’ve encountered
(and I’m discussing only some of them here), despite our
best efforts, we cannot guarantee that no bugs have slipped
into the fonts we generated.

What’s worse, we lack tools that would allow for a thorough
inspection of the fonts. By far the most reliable and handy
tool we’ve come across is LuaTEX – but unfortunately, even
that is sometimes not enough.

What we can certainly promise is that any reported issues
with our fonts will be carefully analyzed, and we’ll do our
best to find an appropriate solution.

CONCLUSIONS – CONTINUED

The fonts we’ve mentioned will be available on the GUST website
shortly after the meeting in Bachotek, and not long after that,
they will also appear in the CTAN repository.

The published set will include:

the Antykwa Półtawskiego family

the Latin Modern family

and the TEX Gyre collection.

CONCLUSIONS – CONTINUED

The fonts we’ve mentioned will be available on the GUST website
shortly after the meeting in Bachotek, and not long after that,
they will also appear in the CTAN repository.

The published set will include:

the Antykwa Półtawskiego family

the Latin Modern family

and the TEX Gyre collection.

This is a set generated for the GUST e-Foundry using the latest
version of the Fontplant software. We have not introduced any
significant modifications to the fonts themselves, as our main
goal was to test whether the rapidly evolving Fontplant is
functioning correctly.

We hope to release a stable version of Fontplant in the near
future – and that will be the time for polishing and fine-tuning
the fonts.

LET’S MEET
AT BACHOTEX
NEXT YEAR

	Title page (a)
	Title page
	Intro -- recollections (a)
	Intro -- recollections (b)
	Intro -- recollections (c)
	Intro -- recollections (d)
	Intro -- recollections (e)
	Intro -- recollections (f)
	Intro -- recollections (g)
	Intro -- recollections
	Our current goal (a)
	Our current goal (b)
	Our current goal (c)
	Our current goal (d)
	Our current goal
	Text--binary conversion (a)
	Text--binary conversion (b)
	Text--binary conversion
	Text--binary conversion: a setback (a)
	Text--binary conversion: a setback (b)
	Text--binary conversion: a setback (c)
	Text--binary conversion: a setback
	Features 1 (a)
	Features 1 (b)
	Features 1 (c)
	Features 1 (d)
	Features 1
	Features 2 (a)
	Features 2 (b)
	Features 2 (c)
	Features 2
	Features 3 (a)
	Features 3 (b)
	Features 3 (c)
	Features 3 (d)
	Features 3
	Features 4 (a)
	Features 4 (b)
	Features 4 (c)
	Features 4 (d)
	Features 4 (e)
	Features 4 (f)
	Features 4
	Conclusions 1 (a)
	Conclusions 1 (b)
	Conclusions 1
	Conclusions 2 (a)
	Conclusions 2
	That's all

