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and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts:

Latin Modern Math (2011)

TEX Gyre Bonum Math (2014)

TEX Gyre Schola Math (2014)

TEX Gyre Pagella Math (2014)

TEX Gyre Termes Math (2014)
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Interestingly, none of these fonts – except for Latin Modern, which is
rightly mentioned as a variant of Computer Modern – is listed on the
relevant Wikipedia page:

https://en.wikipedia.org/wiki/Category:Mathematical_OpenType_typefaces
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INTRO – RECOLLECTIONS

In 2011, the GUST e-Foundry team (Piotr Pianowski, Piotr Strzelczyk,
and I) released a pilot version of the Latin Modern Math font, which,
after five years, resulted in a stable collection of six math fonts.

We weren’t exactly thrilled with the options for typesetting
mathematical formulas available in OpenType fonts (mostly via the
MATH table). Piotr Strzelczyk and I shared our thoughts on the
currently available font technology in the publication “How to make
more than one math OpenType font, or the Beasts of Fonts”.

I believe that Hans and Mikael agreed (to some extent) with our
opinion, as they eventually abandoned the struggle with math fonts
and instead implemented the necessary means for typesetting
math in LuaTEX.

And I agree with them, as the beasts of fonts described in our
publication apparently still happily dwell in the Realm of Fonts.
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OUR CURRENT GOAL

The fonts released by GUST e-Foundry are freely available;
however, the sources (mainly METAPOST scripts, along with
the necessary tools to convert the METAPOST output into a widely
accepted format) changed so frequently that we were unable
to publish them.
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As you may recall, the GUST e-Foundry font engine uses METAPOST

to produce EPS text files. These are processed by a set of Python
scripts (Fontplant) and then passed to FontForge to generate binary
OpenType and/or Type 1 PostScript fonts.

Sometimes, there’s a need to take a peek inside a font’s contents.
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readable, and more importantly, the assembler can recreate exactly
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As you may recall, the GUST e-Foundry font engine uses METAPOST

to produce EPS text files. These are processed by a set of Python
scripts (Fontplant) and then passed to FontForge to generate binary
OpenType and/or Type 1 PostScript fonts.

Sometimes, there’s a need to take a peek inside a font’s contents.

For PostScript Type 1 fonts, there’s a pair of tools – a disassembler
and an assembler (developed by Lee Hetherington) – that convert
the binary form of a font (PFB) into a textual representation and
back again. The important thing here is that the text form is fairly
readable, and more importantly, the assembler can recreate exactly
the same binary file.

Such reversible conversions are quite standard in the TEX
world – for example, disassembling and assembling tools by DEK
for TFM files (tftopl and pltotf), or by Geoffrey Tobin for DVI files
(dv2dt and dt2dv).
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which can then be loaded back into FontForge. However, the SFD file
isn’t particularly readable for humans, and the round-trip conversion
doesn’t exactly meet our expectations.
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stopped using UniqueIDs and XUIDs in their OpenType
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In LuaTEX, one activates a feature
by writing the name of the feature
preceded by a plus in a declaration
of a font, e.g.:

\font\F="[Antykwa-regular]:mode=node;+liga" at 20pt
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Why on earth was the order of rules messed up? Misconception?
Misimplementation? Ayway, the rule ‘sub f f l by f f l;’
is applied first – as shown in the freshly presented example). But why?
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FEATURES: MISDOCUMENTING?

This brings up several key questions: what is the actual order in
which rules are applied? How are the lookups – the sets of rules –
ordered? And finally, in what order are features applied? Perhaps
Hans can shed some light on the “order of application” algorithm
implemented in in LuaTEX?

Microsoft states on their page “Developing OpenType Fonts for
Standard Scripts” that the standard order for applying OpenType
features is as follows:

ccmp – Character composition/decomposition substitution

liga – Standard ligature substitution

clig – Contextual ligature substitution

dist – Distances

kern – Pair kerning

mark – Mark-to-base positioning

mkmk – Mark-to-mark positioning

https://learn.microsoft.com/pl-pl/typography/script-development/standard
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The order Microsoft seems to recommend is likely only partially
accurate. For instance, the ‘dlig’ (discretionary ligatures) feature
may be applied either before or after the ‘liga’ feature, although one
must admit that the position of ‘dlig’ is not explicitly defined –
actually, ‘dlig’ is not mentioned in Microsoft’s note at all.
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sub a a by z;
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Because the available documentation is unsatisfactory and
unreliable, the only way to understand how OpenType feature
processing actually works is through testing. Of course, for testing
we use trivial yet fanciful (artificial) features – but even then, we
ended up with a result that, to us, was an inexplicable conundrum.

The following example was prepared to test (using FontForge) whether
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The only plausible explanation for this riddle is a FontForge bug.
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Fortunately, the newest FontForge (January 1, 2023) fixed it.
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best efforts, we cannot guarantee that no bugs have slipped
into the fonts we generated.

What’s worse, we lack tools that would allow for a thorough
inspection of the fonts. By far the most reliable and handy
tool we’ve come across is LuaTEX – but unfortunately, even
that is sometimes not enough.

What we can certainly promise is that any reported issues
with our fonts will be carefully analyzed, and we’ll do our
best to find an appropriate solution.
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shortly after the meeting in Bachotek, and not long after that,
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The published set will include:
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the Latin Modern family

and the TEX Gyre collection.



CONCLUSIONS – CONTINUED

The fonts we’ve mentioned will be available on the GUST website
shortly after the meeting in Bachotek, and not long after that,
they will also appear in the CTAN repository.

The published set will include:

the Antykwa Półtawskiego family

the Latin Modern family

and the TEX Gyre collection.

This is a set generated for the GUST e-Foundry using the latest
version of the Fontplant software. We have not introduced any
significant modifications to the fonts themselves, as our main
goal was to test whether the rapidly evolving Fontplant is
functioning correctly.

We hope to release a stable version of Fontplant in the near
future – and that will be the time for polishing and fine-tuning
the fonts.



LET’S MEET
AT BACHOTEX
NEXT YEAR


	Title page  (a)
	Title page  
	Intro -- recollections  (a)
	Intro -- recollections  (b)
	Intro -- recollections  (c)
	Intro -- recollections  (d)
	Intro -- recollections  (e)
	Intro -- recollections  (f)
	Intro -- recollections  (g)
	Intro -- recollections  
	Our current goal  (a)
	Our current goal  (b)
	Our current goal  (c)
	Our current goal  (d)
	Our current goal  
	Text--binary conversion  (a)
	Text--binary conversion  (b)
	Text--binary conversion 
	Text--binary conversion: a setback  (a)
	Text--binary conversion: a setback  (b)
	Text--binary conversion: a setback  (c)
	Text--binary conversion: a setback  
	Features 1  (a)
	Features 1  (b)
	Features 1  (c)
	Features 1  (d)
	Features 1 
	Features 2  (a)
	Features 2  (b)
	Features 2  (c)
	Features 2 
	Features 3  (a)
	Features 3  (b)
	Features 3  (c)
	Features 3  (d)
	Features 3 
	Features 4  (a)
	Features 4  (b)
	Features 4  (c)
	Features 4  (d)
	Features 4  (e)
	Features 4  (f)
	Features 4 
	Conclusions 1  (a)
	Conclusions 1  (b)
	Conclusions 1 
	Conclusions 2  (a)
	Conclusions 2 
	That's all

