Recent Status of the TEX Community in Japan

Takuto Asakura

BachoT_EX 2025

Today's Topics

Part I: Key Differences in Japanese and English Typesetting

— Providing the background that shapes the Japanese T_EX community

Part II: (LA)TEX Systems for Japanese Typesetting

—A snapshot of today's TEX ecosystem in Japan

Part III: Recent Trends in Development and Communication

—Current challenges facing us and how we are addressing them

Part I: Key Differences in Japanese and English Typesetting

Key Differences in Japanese and English Typesetting

Character-Set & Space Model Divergence

- Use variable-width letters plus inter-word spaces
- Rely on fixed-width glyphs and virtually no word spaces
- ← Line-breaking logic starts from fundamentally different premises

2 Strict Line-Breaking Prohibitions

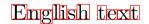
Large sets of *leading-prohibited* (e.g., closing punctuation) and *trailing-prohibited characters* (e.g., opening brackets)

Mixed-Script Composition Is the Norm

- Numerals, English words, formulae, and symbols appear routinely inside Japanese prose
- Automatic inter-script spacing (e.g., \xkanjiskip), kerning, and baseline alignment are required at every boundary

Character-Set & Space Model Divergence

Fixed-width (full-width) vs. variable width


- ## Builds rhythm with variable-width glyphs + inter-word spaces
- Kanji and kana occupy a nominal 1-em square grid

Lack of inter-word spaces—different line-breaking logic

- ****** Candidates occur mainly at space positions and hyphenation points
- Line-break candidates = virtually every character boundary

Characteristic text

Strict Line-Breaking Prohibitions

The rule set of "where you may not line break"

- No inter-word spaces = all character boundary is a candidate break
 Prohibitions exclude a large fraction
- Readability hinges on the positions of punctuation marks
 - —commas, periods, brackets, repeated dashes, etc.

Core categories: "no break before" vs. "no break after"

- Forbidden at line start period, comma, closing bracket, etc.
- Forbidden at line end opening bracket, long dash, etc.

Mixed-Script Composition Is the Norm

Latin letters, numerals, math formulae, and code chunks appear frequently in Japanese texts (at least in scientific documents)

- Designed on the premise that several scripts share a single line:
 - Automatic insertion of appropriate spacing at script boundaries
 - ► Handling conflicts in line-breaking logic i.e., Western hyphenation and Japanese line-breaking prohibition tables are evaluated in parallel
 - ▶ Baseline alignment & glyph-size harmonization

```
Without Kanji-Latin Space (\xkanjiskip = 0 em)
この文書はIAT<sub>E</sub>Xとdvipdfmxで作成された。
With Kanji-Latin Space (\xkanjiskip = 0.25 em)
この文書は IAT<sub>E</sub>X と dvipdfmx で作成された。
```

Other Features Unique to Japanese Typesetting

Vertical writing (top-to-bottom, right-to-left)

In recent years, horizontal text has become common in Japanese, but vertical writing is still used in newspaper, literature, etc.

Multi-layer inline layout (variants of emphasis)

Part II: (LA)TEX Systems for Japanese Typesetting

Current (LA)TEX Workflows for Japanese Typesetting

Two practical approaches are in everyday use

- ▶ pTEX variants: pLTEX or upLTEX + dvipdfmx
 - ► A Japanese-specific extension maintained since the 1990s
 - Support for JFM, native line-break prohibitions and vertical-typesetting primitives, etc.
- ► LuaT_EX-ja: LuaLT_EX + luatexja package
 - ► Implements the Japanese layer in Lua on top of the LuaT_EX engine
 - ► Meets Japanese requirements while keeping feature parity with standard Western 上下X

pT _E X variants and LuaT _E X-ja				
Engine	Speed	Stability	Sustainability	Users
pT _E X	Fast	Very high	Great concern	General / Passively conservative
LuaT _E X	Slow	Moderate	Fine	Somewhat advanced

pT_EX — Core Extensions for Japanese Typesetting

Support for JFM (Japanese Font Metrics)

- ▶ Per-character-class settings for width, side bearings, kerns, etc.
- ► Auto-inserted glue: \kanjiskip (between Japanese chars), \xkanjiskip

Line-break prohibitions built into the core

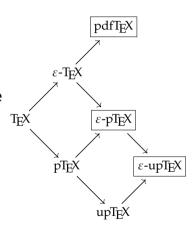
- ▶ Line-head / line-end prohibition is integrated inside the engine core
- During break search, \prebreakpenalty and \postbreakpenalty are assigned to eliminate illegal candidates

Native support for vertical writing

Direction switches with \yoko (horizontal) and \tate (vertical); the engine rotates the glyph coordinate system accordingly

LuaT_EX-ja handles the same issues via flexible Lua callbacks

The pT_EX Legacy (1) pT_EX vs. upT_EX


PTEX 8-bit JIS encoding; kanji are stored as two bytes, making user-defined characters hard to extend

upT_EX Internal Unicode encoding; so that users can use characters outside of the 8-bit JIS encoding

It covers all BMP (Basic Multilingual Plane) CJK characters plus IVS (Ideographic Variation Sequence) support and more

💡 From TL 2024 onward, an unified binary

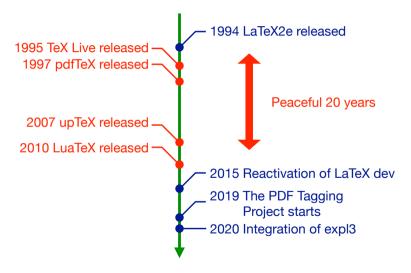
→ ptex is now upT_EX's pT_EX-compatible mode

The pT_EX Legacy (2) Encodings and \kcatcode

Input vs. internal encoding

Input chosen by auto-detection or by -kanji option ((s)jis, euc, utf8)
Internal pTEX: fixed 8-bit JIS code

upT_EX: Unicode


Thus pTEX converts UTF-8 **before** tokenization

\kcatcode — Japanese-specific category code

- ► Every multi-byte Japanese character receives a \kcatcode E.g., 15 = Non-CJK, 16 = Kanji, 17 = Kana, 18 = Others
- Used both for lexical scanning (e.g., judging control sequences) and for line-break/prohibition class look-ups
- ► The specification differ noticeably between pT_EX and upT_EX
 - See "Guide to pTEX for developers unfamiliar with Japanese" (ptex-guide-en.pdf)

Part III: Recent Trends in Development and Communication

Brief History of LaTeX 2ε and Some TeX Engines

PLATEX Predicament—A Mountain of Technical Debt

A giant patch-work

Decades of incremental extensions mean every upstream $\text{LT}_{\text{E}}X$ change triggers a new cascade of local fixes

Rapid LATEX-kernel evolution (since 2020)

- ▶ Migration from NFSS 2 to the *new* NFSS (2020)
- ► Introduction of the new hook system and the plug/socket mechanism (2020–)
- Japan-specific extensions now need frequent "catch-up patch" cycle

Severely limited manpower

All Japanese engines and formats are effectively maintained by only **one or two** active developers each

Root Cause: pTEX's Incompatible Token Model

(u)pT_EX = "8-bit engine + special Japanese tokens"

- Western characters live in the 0–255 range, while Japanese characters are stored as code points ≥ 256
- ▶ Japanese tokens have no \catcode; hence active characters and similar mechanisms cannot be assigned to them

Examples of practical breakage

- expl3 string modules (I3regex, I3str-convert, etc.) misbehave or fail
- \detokenize that mixes 8-bit chars and Japanese tokens yields illegal token lists

A radical fix would require rewriting both the specification and the C core implementation of pT_EX—realistically infeasible

It Is Not Just an Engine- or Kernel-Level Issue

Relatively manageable items

- Generic Japanese document classes (e.g., jarticle, jsarticle, jlreq)
- ► Japan-specific LaTEX packages

Hard-to-maintain items

- ▶ Patch collections that adapt *foreign* packages cf. plautopatch
- Journal / society templates and other publisher-specific macros
- Long tail of legacies makes a clean break from pTEX extremely hard
 - doc (latex)
 → pldocverb (platex-tools)
 - tracefnt (latex)
 → ptrace/uptrace (platex/uplatex)
 - fitrace (latex)
 - → pfltrace (platex)
 array (latex-tools)
 - $\begin{array}{l} \rightarrow \mathsf{plarray} \; (\mathsf{platex\text{-}tools}) \\ \bullet \; \mathsf{array} \; (\mathsf{latex\text{-}tools}) \; + \; \mathsf{plext} \; (\mathsf{platex}) \end{array}$
 - $\begin{array}{l} \rightarrow \mbox{ plextarray (platex-tools)} \\ \bullet \mbox{ delarray (latex-tools)} + \mbox{ plext (platex)} \end{array}$
 - → plextdelarray (platex-tools)

 colortbl + plext (platex)
 - → plextcolortbl (platex-tools)
 arydshin
 → plarydshin

- arydshin + plext (platex)
 → plextarydshin
- siunitx
 → plsiunitx
- collcell
- → plcollcell • everysel (ms)
- → pxeverysel (platex-tools)
 everyshi (ms)
- → pxeveryshi (platex-tools)
 atbegshi (oberdiek)
- → pxatbegshi (platex-tools)
 ftnright (latex-tools)
- → pxftnright (platex-tools)
 multicol (latex-tools)
 → pxmulticol (platex-tools)

- xspace (latex-tools)
- → pxxspace (platex-tools)

 textnos
- → pxtextpos (gentombow)
- eso-pic
 → pxesopic (gentombow)
- pdfpages
 → pxpdfpages (gentombow)
- stfloats (sttools)
- → pxstfloats (pxsttools)
 hyperref
- → pxjahyper
- pgfrcs (pgf)
 → pxpgfrcs
- pgfcore (pgf)
 → pxpgfmark

Community Status & Possible Paths Forward Communication channels

- ► Mostly text-based: Japanese T_FX Users Slack and GitHub Issues
- ► T_FXConf: Annual Japanese T_FX Users Conference

npT_EX concept—a X₃T_EX-based, legacy-free successor

- Specification still undefined, prototyping status for a few years
- ► Lagrangian Fig. № Lagrangian № Lagrangian

Where I fit in

- ▶ Not an engine hacker; my focus is documentation and tooling
- My efforts to stay engaged with the global TEX community include Texdoc development and translating LearnLaTeX.org
- ► Talks like this aim to bridge the information gap with the global T_EX community

Summary

Japanese vs. Western typesetting: what really differs

Zero inter-word spaces, script mixing, and strict break-prohibition rules demand their own line-break logic, JFM glue, and vertical-writing support

Two practical Japanese workflows, two philosophies

pT_EX variants = fast, engine-level C extensions; LuaT_EX-ja = flexible Lua callbacks on a modern UTF-8 core—each with clear strengths and growing maintenance costs

The road ahead: limited hands, rising kernel changes

One-to-two active developers per engine, legacy token issues, and the still-vague npTeX idea mean collaboration and fresh contributors are urgently needed

References

- ► Takuto Asakura, The BXghost Package, Version 0.5.1 (2023).
- Japanese T_EX Development Community (texjporg). pT_EX Manual, Version p4.1.1 (June 2024).
- ▶ Japanese T_EX Development Community (texjporg). Guide to pT_EX for developers unfamiliar with Japanese, Version p4.1.1 (June, 2024).
- Hironori Kitagawa. Japanese Typesetting with LuaT_EX. EuroT_EX 2012. https://github.com/h-kitagawa/presentations/blob/HEAD/eurotex12.pdf.
- Hironori Kitagawa. About "X=TEX-based npTEX" (in Japanese). https://qiita.com/h-kitagawa/items/ebbf3684b3b1be8f0747 (2023) (accessed on 2025-05-01).
- ► The LATEX Team. LATEX News Issue 40 (November 2024).
- The LuaT_EX-ja Project Team. The LuaT_EX-ja Package, Version 20250401.0 (April 2025).
- W3C. Requirements for Japanese Text Layout (JLReq). https://www.w3.org/TR/jlreq/ (2020) (accessed on 2025-05-01).
- ► Hironobu Yamashita, pᡌTEX may be seriously in danger (in Japanese). https://acetaminophen.hatenablog.com/entry/2021/06/18/022108 (2021) (accessed on 2025-05-01).
- ► Hironobu Yamashita, Package plautopatch, Version 0.9q (2021).