MetaPost: A Reference Manual

Peter Grogono

Wednesday 9™ June, 2010

Contents

1 Introduction 1

2 Basic Concepts 2
2.1 Version e e e 2
2.2 Input format e 2
2.3 The ITEX File o o e 2
2.4 Comments e e e 4
2.5 Units e 4
2.6 Coordinates e e e 4
2.7 Variables e 5
2.8 Internal Variables e 5
2.9 Declarations e e e e 6
2.10 Scope . . .o 6
2. 11 EXpPressionso e e e e e e e e 7
2.12 Assignment L L e 8
2.13 Equations e e e e e 8

3 Types 9
3.1 Booleans e e e 9
3.2 SErings 10
3.3 Colors . ..o e 11
3.4 Numerics e e 12
3.5 Pairs e 13
3.6 Penso e e e 14
3.7 Transforms o e e 17
3.8 Pictures e e e 19
3.9 LiStS . . . o e 20

4 Paths 21
4.1 Straight lines 21
4.2 Dots and Dashes e 22
4.3 Circles, Disks, and Arcs e 22
4.4 CUIVES . . o o o o e e e e e e e e e e 23
4.5 Parametric Paths 24

Contents

4.6 Path Constructors e

5 Commands

5.1 Drawing Commands oL
5.1.1 btex and verbatimtex
5.1.2 clip . . .o
5. 1.3 draw . ..o e
5.1.4 drawarrToW v v e e e e e e e e e e e e e e e e e
5.1.5 £ill e
95.1.6 label e e e e e

5.2 Non-drawing Commands
5.2.1 drawoptions
5.2.2 filemametemplateo
5.2.3 fOTr . . . e e e
5.2.4 Af Lo
D.20 mMeSSage
5.2.6 readfrom e e e
D.2.7 SAVE . . . o i e e e e e e e
5.2.8 showand friends
5.2.9 write e e e e e e

6 Macros
6.1 def macros e e e
6.2 vardef and other macro forms Lo

7 Macro Packages

7.1 Boxes
7.1.1 Creating and Drawing Boxes,
7.1.2 Positioning Boxes
7.1.3 Oval Boxes e

7.2 Graphs. e

7.3 TEX . o s

8 Debugging

9 Examples

9.1 Euler Integration Lo
9.2 The Lorentz Transformation L.
9.3 Dissipation
9.4 Desargues’ Theorem
9.5 Three Dimensions
9.6 ReadingaFile

10 Links

Index

ii

28
28
28
29
29
30
30
31
31
31
32
32
33
34
35
35
35
36

36
36
38

38
39
39
40
41
42
43

44

44
45
46
48
49
50
92

53

54

List of Figures

List of Figures

0~ O UL W -

— o= = = O
UL W N~ O

The effect of 1inecap and linejoin 16
Parametric curveso Lo o 24
BTEX fonts o o 0o 28
Escape sequences for filenametemplate 32
Using for...within to obtain a partial analysis of a picture. 34
Box variables Lo 40
Oval variables L 42
Simulated coin tossing Lo 43
Fuler Integration 45
The Lorentz Transformation 47
Point numbering used in Figure 10 o L. 47
Area reduction in a dissipative system Lo oo 48
Desargue’s Theorem o 50
Programming Desargues’ Theorem 51
Perspective view of acube oo 52

iii

1 Introduction

METAPOST is a picture-drawing language that generates diagrams and pictures in embedded
postscript. METAPOST, an extension of Donald Knuth’s MetaFont, was designed and imple-
mented by John Hobby at AT&T Bell Laboratories.

The official guide for METAPOST, Hobby’s A User’s Manual for METAPOST, referred to in this
manual as UMM, is written in a narrative style that is easy to read but hard to learn from. Several
other people have written METAPOST manuals in narrative form. This manual is intended both
to help beginners and to serve as a reference.

Examples of METAPOST code in this manual are intentionally short. This should make it easier
to see the point of the example. With long and complex examples, it is sometimes hard to relate
the code to the output. There are some longer examples at the end (§9:44).

This manual is not complete. Important omissions are indicated by a reference to UMM. In
particular, UMM includes a complete grammar for METAPOST, whereas this manual relies mostly
on examples.

Conventions

e Since there are a large number of cross-references in this manual, we use a concise notation.
For example, (§3.7:17) is a reference to Section 3.7 which is to be found on page 17.

e Most lists in METAPOST use comma as a separator. Unless stated otherwise, the term
“list of X” means a list of the form X1, Xo, X3,.. ..

e In grammar rules, (pred) indicates a predicate (boolean-valued expression) and (seq)
indicates a sequence of commands.

e The command “show (expr)” displays ‘>>’ followed by the value of the expression (§5.2.8: 35).
In examples containing show, we put the code on the left of the page and the output to
the right of it, like this:

show (3,4) + (5,6); >> (8,10)

e Similarly, we illustrate drawing techniques by putting code on the left and the picture
produced on the right. In these examples, we usually omit the commands beginfig and
endfig, as here:!

draw unitsquare rotated 45 scaled 25;

e We use the symbol 2 to mean “is defined to be equal to”.

Acknowledgments [am indebted to Brian Shearing for ingenious hints on METAPOST usage
— and, indeed, for informing me of its existence in the first place.

'Numbers in the margin, such as #15 here, are an editing aid and will not appear in in the final version of this
manual.

2 Basic Concepts
2 Basic Concepts

2.1 Version

Features were added to METAPOST as it evolved. This manual describes Version 1.000 but also
includes some useful features of later versions. The string constant mpversion (§3.2:10) will
tell you what version you are using, but only if it is a fairly recent version.

2.2 Input format

METAPOST is a program that reads an input file with a name of the form (name).mp and
writes several output files. By default, the names of the output files are (name).1, (name) .2,
(name) .3, etc. For example, if the input file was fig.mp then the output files would be are
fig.1, fig.2, fig.3, and so on. The precise form of the output file name is controlled by
the command filenametemplate (§5.2.2:32). The output files are read by TEX, KTEX, or any
program that accepts embedded postscript files.

In the input file, each figure is introduced by beginfig(n), where n is the number of the figure,
and terminated with endfig. Commands may occur outside figures as well as inside them. An
input file has the general form:

(seq)

beginfig(1l);

(seq)
endfig;

(seq)

beginfig(2);

(seq)
endfig;

beginfig(n);

(seq)
endfig;

end

2.3 The BTEX File

There are several ways of including METAPOST diagrams in a IIEX files. Two of them
are described below. Assume that the file generated by METAPOST for figure n is called
(name).(number), where

e (name).mp is the name of the file processed by METAPOST

2 Basic Concepts

e (number) is the number of the figure

Using the graphicx Package Include the graphicx package by writing
\usepackage{graphicx}

in the preamble of your KTEX document. To insert METAPOST figure n in your document,
write

\includegraphics{(name).(number)}

Use optional arguments to \includegraphics to scale the diagram if necessary. Use standard
IXTEX commands to position it. One possibility is to use an equation environment to centre the
diagram. For example:

$$ \includegraphics[width=5in]{mypics.7} $$

TEX may not accept a file name with a numerical extension. As mentioned above, however,
METAPOST can write files with arbitrary names (§5.2.2:32).

Using the hyperref Package Include the hyperref package by writing
\usepackagel[...]{hyperref}

in the preamble of your IXITEX document. This package has many useful options, indicated here
by ‘...". To insert METAPOST figure n in your document, write

\convertMPtoPDF{(name) . (number)}{(Xscale) }{(Yscale)}
in which:
e (Xscale) is the horizontal magnification factor
e (Yscale) is the vertical magnification factor
For example, to include Figure 3 generated from figs.mp without scaling, write:

\convertMPtoPDF{figs.3}{1}{1}}

The file mproof.tex The TEX file mproof creates a .dvi file from METAPOST output. After
the following run, mproof.dvi contains the text “figs.65” and the corresponding figure.

D:\Pubs>tex mproof figs.65

This is TeX, Version 3.141592 (MiKTeX 2.6)

(figs.65

figs.65: BoundingBox: 1lx = -1 1ly = -3 urx = 61 ury = 72
figs.65: scaled width = 62.23178pt scaled height = 75.28038pt
)

(1]

Output written on mproof.dvi (1 page, 396 bytes).

2 Basic Concepts

2.4 Comments

METAPOST comments are delimited by the character ‘%’ and the end of the line on which %
appears, as in IATEX.

2.5 Units

The default units of METAPOST are Postscript points. Postscript points are also called “big
points” because they are slightly bigger than printer’s points. The abbreviations for Postscript
points and printer’s points are bp and pt, respectively, as in TEX:

1bp = 1/72inches
1pt = 1/72.27 inches

METAPOST also understands the other units provided by TEX: cm (centimetres), mm (millime-
tres), in (inches), and pc (picas: 1pc = gin)). The units behave like constants defined with the
appropriate values. For example, the value of 10*mm is the length 10 millimetres expressed in
Postscript points. The multiplication operator, *, can be omitted if the left operand is a number
and the right operand is a variable. At the last line, METAPOST does not report an error for
n mm, but parses it as a compound name (§2.7:5), n.mm, with no defined value.

n = 10; >> 28.3464
show 10*mm;)

>> 28.3464
show 10mm;

>> 28.3464
show n*mm;

>> n.mm

show n mm;

It is sometimes convenient to define a unit and use it to scale every number. Here is an example
of picture scaling:

u = 1cm;

draw (Ou,0u) -- (1.5u,0u) -- (1.5u,1.5u) -- (Ou,1.5u) -- cycle;
z1 = (0u,-0.2u);

z2 = (1.5u,-0.2u);

drawdblarrow zl -- z2;

label.bot("1.5cm", 0.5[z1, z2]);

1.5cm

2.6 Coordinates

METAPOST uses the conventional coordinate system of mathematics: X values increase across
the page to the right, and Y values increase up the page.

drawarrow (0,0) -- (0,30);

drawarrow (0,0) -- (30,0); Y
dotlabel.llft(btex (0,0) etex, (0,0));

label.rt(btex X etex, (30,0)); X
label.top(btex Y etex, (0,30)); (0,0)

20

2 Basic Concepts

Usually, it does not matter where the origin is, because the Postscript file that METAPOST
generates defines a bounding box for all of the visible components of the picture. The origin
might be centered, at the lower left, somewhere else inside the bounding box, or even outside it.
However, if the origin is inside the picture, some of the coordinates may be negative. Postscript
processors occasionally object to negative coordinates. This problem is rare but, if it occurs, it
can be corrected by concluding each figure with the command

currentpicture := currentpicture shifted (-llcorner currentpicture);

In this command, currentpicture (§3.8:19) is an internal variable of type picture, shifted
is a transform (§3.7:17) and 11lcorner gives the coordinates of the lower left corner of a picture.

2.7 Variables

Almost any string to which METAPOST does not assign a meaning can be used as a variable name.
For example, @&#$@ is a legal name. In practice, it is usually better to use more conventional
names.

In general, a name consists of a tag optionally followed by a suffiz. Any sequence of upper
and lower case letters is a valid tag. Tags may also contain other characters, of which the most
common is ‘.. For example, METAPOST uses tags such as b.n and b.s to denote points on
boxes.

The suffix may be a simple numeric, as in p3, or an expression in brackets, as in p[i+3]. Mul-
tidimensional indexes must be separated with dots or brackets: p.3.4 is equivalent to p[3] [4].

The names x, y, and z play a special role. First, they are implicitly local (§2.10:6). Second,
they are linked by the implicit equations

z = (z,9)
xpart z =
ypart z =

where z, y, and z stand for names that start with x, y, or z and are followed by a suffix. Thus
z.a[3] denotes the pair (x.a[3], y.al[3]).

2.8 Internal Variables

METAPOST has a large number of internal variable names. Internal variables are implicitly
declared within METAPOST but can be given new values by assignment (§2.12:8).

The command newinternal introduces new variables that behave like internal variables. This
is not very useful in simple diagrams but might be useful in a macro package. To introduce new
internal variables Jack and Jill, write:

newinternal Jack, Jill;

2 Basic Concepts

2.9 Declarations

A type name followed by a list of variable names serves to declare the variables named in the list.
The type names are: boolean, color, numeric, pair, path, pen, picture, string, transform.
Each type is described in detail later (§3:9).

If a variable is used without declaration, it is assumed to be a numeric. Occasionally, METAPOST
is able to determine the type of a variable from its use, and an explicit declaration is not required.
In most cases, however, a declaration is required. In particular, a declaration is required when:

e The type of the variable cannot be determined from the context in which it is used.

e A declaration can be used to “undefine” the variable, that is, to change its value to
“unknown”.

e An array is being declared. Following the declaration

pair pll;

the variables p0,pl,p2,...,p[i], in which i is an integer expression, are all available for
use.

e Multidimensional arrays can be declared with flexible syntax:

path pll10l, qllr(];

Corresponding values would include p[1] [2], q[i]r6, etc.

Declarations with numeric suffixes, such as
pair pl, p2;

are not allowed; the general form p[] described above must be used.

2.10 Scope

In general, the scope of a name starts at the point of its declaration or first use and extends to
the end of the source file. There are two exceptions to this rule. First, the names x, y, and z
play a special role to be described shortly. Second, the constructs begingroup and endgroup
provide an environment in which local names can be declared.

METAPOST uses groups to provide local variables. The syntax of a group is
begingroup (seq) endgroup
in which (seq) is a sequence of commands. The last item in the sequence may be an expression,

in which case the value of this expression becomes the value of the group.

Within a group, the command save (§5.2.7:35) followed by a list of variable names makes those
names local to the group. The global values of these names, if any, are saved. In the code below:

e a is used both globally and locally; its global value, 1, is restored on group exit.

e b is defined as a local variable within the group and becomes undefined on group exit.

2 Basic Concepts

e c is defined within the group but is not declared as a local variable. Consequently, it is
treated as a global variable and its value is retained on group exit.

a=1;
begingroup

save a, b;

a = 2;

b = 3;

c = 4;
endgroup; >> 1
show a; >> b
show b; >> 4
show c;

The command interim allows you to redefine a internal variable inside a group without changing
its global value. For example, the following statements draw an arrow (§5.1.4:30) with an
elongated head without changing the global value of ahlength:

begingroup;
interim ahlength := 15; 2 66
drawarrow (0,0) -- (40,40);

endgroup;

The scope of the special names x, y, and z is restricted to a particular figure. That is, the code
on the left has the effect of the code on the right (of course, the beginfig/endfig environment
also creates a figure file, etc.):

begingrou
beginfig(n) g sive i v, z;
(seq) (seq)
endfig
endgroup

Recommendation: save all of the variables in a
figure that are not needed for other figures.

2.11 Expressions

An expression in METAPOST is a (primary), (secondary), (tertiary), or (expression). A binary
operator with highest precedence is called a (primary binop) and its operands must either be
(primary)s or be enclosed between parentheses. Since unary operators have higher precedence
than binary operators, there are four levels of precedence. Binary operators are organized as
follows, with the top line having highest priority.

(unop) abs angle arclength

(primary binop) * / **x and dotprod div mod infont
(secondary binop) + - ++ +-+ or intersectionpoint intersectiontimes
(tertiary binop) & < <= <> = >= > cutafter cutbefore

2 Basic Concepts

However, division (/) has highest precedence if both of its operands are numbers. This means
that, for example:

sqrt 2/3 = /2/3
sqrt n/d = /n/d
sqrt(n/d) = 4/n/d

The exponent operator ** has the same precedence as multiply (*). Consequently:

3xaxx2 = (3a)°.

The meaning of most of the operators are conventional. There are special operators for the
hypotenuse and difference of squares:

a++b = \/m
a+-+b = Va?—b?

There are also many operators with names, both unary and binary. The operators that may be
used with each type, and their meanings, are discussed with the corresponding types (§3:9).

Some expressions use the keyword of. The general format of these expressions is
(of operator) (expression) of (primary)

where (of operator) is one of:

arctime direction directiontime directionpoint penoffset point
postcontrol precontrol subpath substring

For example (§3.2:10):

substring (2,4) of "abcde" = "cd".

2.12 Assignment
The assignment operator is :=, and it has the usual effect of giving the variable on its left side
the new value obtained by evaluating its left side. Previous values of the variable are discarded.

Assignment (:=) should be distinguished from equality (=), which is used in equations, as de-
scribed in the next section.

2.13 Equations

Variables may receive values either explicitly by assignment, as above, or implicitly by linear
equations. Equations use the equality comparison, =. Equations may be built up from numerics
(83.4:12), pairs (§3.5:13), or colors (§3.3:11).

MetaPost must be able solve equations before
any pictures that use their values are drawn.

3 Types

METAPOST easily solves the equations below, obtaining a = 3, b = 4, ¢ = 5. Note that 2xa
can be abbreviated to 2a, etc. The effect of the command showdependencies is to display the
inferences that METAPOST has made from the equations at that point, as shown at the right.

2a + 2b + ¢ = 19;

3a-b = 5; >> a=-0.125c¢+3.625
showdependencies; >> b=-0.375c+5.875
4b-3c = 1;

A value obtained by solving equations may be changed by assignment. However, the assignment
changes only the variable assigned.

a = 2; % gives a the value 2
a = b; % gives b the value 2
a := 3; % gives a the value 3 but does not change b

The symbol whatever introduces a new, anonymous variable. It may be used to avoid intro-
ducing variables unnecessarily. For example, we could find the intersection i of two lines (p,q)
and (r,s) by using the fact that alp,q] is a point on the line from p to q (§2.11:7).

i = alp,ql;
i = blr,s];

Since the names of the numerics a and b are not needed, we could write instead:

i = whatever[p,q] = whatever([r,s];

It does not matter that the two instances of whatever will have different values.

3 Types

The types provided by METAPOST are: boolean, string, color, numeric, pair, path, pen,
picture, and transform. All of them are described in this section except path, which has its
own section (§4:21).

3.1 Booleans

The values of boolean are true and false. The binary comparison operators =, <>, <, <=, =>,
and > return boolean values. The unary operator not and the binary operators and and or
take boolean operands and return the expected boolean values. Booleans are also needed for
if statements (§5.2.4:33).

The equality operators = and <> work with all types. The comparison operators, <, <=, =>, and
>, work with most types and have expected values for reasonable types.

Type names can be used as predicates:

3 Types

A .
booleanb = b is a boolean
A .
colorc = c1isa color
A .
rgbcolor ¢ = c1is a rgbcolor
A .
cmykcolor ¢ = c1s a cmykcolor
. A i .
numericn = n IS anumeric
. A . .
pairp = pis a pair
A .
pathp = pisapath
A .
penp = plisapen
. A . .
picturep = pis a picture
. A . .
strings = s1s a string

transform ¢

Other predicates include:

1>

t is a transform

oddn 2 the closest integer to n is odd
cycle p 2 path p is a cycle
knownz = z has a value
unknown z = 2 does not have a value

3.2 Strings

Strings are sequences of characters bounded by double quotes ("). Strings may not contain
double quotes or line breaks. The binary comparison operators =, <>, <, <=, => and > accept
string operands and use the underlying character codes for ordering.

Functions for strings include:

. A
strings =
A

true if s is a string

length s the number of characters in s

Constants and functions yielding strings include:

ditto 2 the one-character string "
mpversion 2, string giving the version of METAPOST
substring (m,n) of s 2 characters m to n of string s
scantokens(s) 2 the result of parsing the token sequence s
charn 2 a string consisting of the character with ASCII code n
decimaln 2 a string representing the decimal representation of the number n

10

3 Types

str s the string representation of the suffix s

> 1>

s&t the concatenation of strings s and ¢

The indexing convention for strings is the same as C: the first character has index 0 and the
second argument of substring indexes the first character following the selection:

substring (2,4) of "abcde" = "cd".

The expression
s infont f

yields a picture (§3.8:19) consisting of the string s typeset in the font f. There is a defaultfont
(usually cmtex10) with a size defaultscale (usually 1).

g
draw "MetaPost" infont "cmsl12" scaled 2 rotated 30; 6, # 74
et

Calling scantokens invokes METAPOST’s input routine. It can be used as a general conversion
function. For example, this call gives pi the numerical value 3.14159:

pi := scantokens("3.14159");

scantokens is one of the few METAPOST operations that creates a list (§3.9:20). See also
(§9.6:52) for a more interesting application of scantokens.

3.3 Colors

A value of type color has three components, corresponding to the red, green, and blue compo-
nents of a colour. Each component is clamped to the range [0,1]. Colours are written (r,g,b).
METAPOST can solve linear equations involving colours. Two colours may be added or sub-
tracted; a colours may be multiplied and divided by numerics; colours may be used in linear
equations.

show white/4; >> (0.25,0.25,0.25)
show 0.2green + 0.6blue; >> (0,0.2,0.6))

Constants and functions for colours include:

colorc 2 trueif ¢ is a RGB colour
black = (0,0,0)
white 2 (1,1,1)
red 2 (1,0,0)
green 2 (0,1,0)
blue 2 (0,0,1)

11

3 Types

redpart(r, g, b) 2

greenpart(r, g,b) 2 g

bluepart(r,g,b) 2
A

background the background colour (default = white)

To change the foreground colour (i.e., the drawing colour), use drawoptions (§5.2.1:31).

Later versions METAPOST support the CMYK colour model as well as RGB. A CMYK colour
is represented as a four-tuple (c,m,y,k) with (1,1,1,1) representing black and (0,0,0,0)
representing white. The following constants and functions are provided:

rgbcolor 2 a synonym for color
cmykcolor ¢ 2 true if ¢ is a CMYK colour
cyanpart(c,y, m, k) 2 .
magentapart(c,y, m, k) 2 Yy
yellowpart(c,y, m, k) S m
blackpart(c,y, m, k) 2k

Colour expressions usually appear in withcolor clauses in conjunction with commands such as
draw (§5.1.3:29), drawoptions (§5.2.1:31), £i1l and filldraw (§5.1.5:30). withcolor works
for both RGB and CMYK colours, but the two systems should not be mixed within a single
picture.

3.4 Numerics
METAPOST uses fixed-point arithmetic with 2716 = 1/65536 as the unit for the numeric type.
The largest number that can be represented is about 4096.

The lengths that METAPOSTcan represent range from 1/65536 bp ~ 5.38 nanometres to
4096 bp ~ 1.4 metres. For comparison, the wavelength of blue light is about 400 nanometres
and the length of standard paper is about 0.29 metres, depending on where you live.

The arithmetic operators +, -, *, and / can be used with numerics. The binary comparison
operators =, <>, <, <=, => and > accept numeric operands and provide the conventional ordering.

Numeric constants and expressions include:

epsilon 2 /65536 (the smallest value that METAPOST can represent)

infinity ~ 4095.99998 (the largest value that METAPOST can represent)
day 2 current day (of the month)
month 2 current month
year 2 current year
time 2 job start time (minutes since midnight)

12

3 Types

Numeric functions include:

decimal n 2 the decimal string corresponding to n
numeric n £ trueif n is numeric
oddn 2 true if the closest integer to n is odd
mdivan 2 lm/n] (integer division)
mmod n 2 m-— nim/n| (integer remainder)
absx = |z|,the absolute value of z
sqrt x 2 Vv
sindz 2 sinw (x in degrees)
cosdz 2 cosz (z in degrees)
mexp T 2 /256
mlog x 2 256lnz
floorz 2 the greatest integer less than or equal to =
ceiling x £ the least integer greater than or equal to z
round z 2 the integer closest to x
X++y = \x? +y?
w2\
uniformdeviate z 2 a random number uniformly distributed in [0, x]
normaldeviate = a random number with normal distribution, y =0, 0 =1
3.5 Pairs

A pair is a tuple of two numerics that is most often used to represent a position in the two-
dimensional plane of the picture but can also be used to represent a direction. Literal pairs are
written as (m,n) in which m and n are numerics.

Pairs can be added and subtracted (like vectors), multiplied or divided by numerics, and used
in linear equations. Mediation abbreviates a common operation:

rlp,q] 2 p+r*(q—p)

If 0 < r <1, the result is a point between the points p and q, with r = 0 corresponding to p
and r = 1 corresponding to q. All values of r are legal:

z1 = (0,0); od

z2 = (0,50);

draw z1--z2; 2

dotlabel.rt(btex $4 \over 3$ etex, 4/3[zl1,z2]); f
3

dotlabel.rt(btex $2 \over 3$ etex, 2/3[z1,z2]);
dotlabel.rt(btex $1 \over 3$ etex, 1/3[z1,z2]);

13

4 23

3 Types

The names x, y, and z play a special role:
e They are undefined by beginfig (§2.2:2).

e z(suffix) is defined to be equal to (x(suffix), y(suffix)), where (suffix) is a number, index,
or name (§2.7:5). Thus z[3].t can be abbreviated to z3t and is equivalent to the pair
(x3t,y3t).

The pair (x,y) can be used to represent the direction § = tan=!(y/x). Angles in METAPOST
are measured in degrees. For example, dir 90 = pair(0,1).

smallRad = 30; 120 90 60
bigRad = 40; 150 30
for angle = 0 step 30 until 330:

s := sind angle; 180 0

1
c := cosd angle; 210 330 7 13

drawarrow origin -- (smallRad*c, smallRad*s); 240 300
label(decimal angle, (bigRad*c, bigRadxs));
endfor;

270

Constant pairs include:

origin a (0,0)

up 2 (0,1)

down 2 (0,-1)

left 2 (-1,0)

right 2 (1,0

Functions for pairs include:

xpart(x,y) 2
ypart(z,y) =
abs 2z a \x? + y? (hypotenuse)
unitvector z = z/abs z (normalize)
angle z = tan=1(y/z) (in degrees)
round z 2 (round x, round y)
z1 dotprod 2o 2 T1Y1 + T2y (inner product)
r 21, 22] 2 g+ (22 — 21) (mediation)
dir 6 = (cosdf, sind) (direction)

3.6 Pens

All objects are drawn with a pen. The command

pickup (pen expression)

14

3 Types

selects a pen with characteristics defined by (pen expression) with syntax

pencircle
pensquare

} (transform)

where (transform) is an affine transformation (§3.7:17). Naturally, pencircle gives a round
nib and pensquare gives a square nib. The operator pensquare is actually a macro defined by

pensquare e makepen((-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle)

and, in general, makepen will construct a pen nib from any closed path (§4:21). The operator
makepath is the inverse of makepen: if p is a pen, then makepath p is the polygon that it uses
as a nib. Thus:

makepath pencircle = fullcircle.

It is best to use a round nib (pencircle) when drawing dotted and dashed lines (§4.2:22);
square or polygonal pens yield unpredictable results.

The constant nullpen is a pen with no useful properties. A function that is supposed to return
a pen but cannot do so should return nullpen.

The default pen is quite thin:

defaultpen 2 pencircle scaled 0.5 bp.

Thick pens are defined by simple scaling:
pencircle scaled 5pt

You can use xscaled and yscaled to obtain an elliptical or rectangular nib:

path p;
drawoptions(withpen pencircle
xscaled 2bp yscaled 0.1bp);
p = (0,0) for i = 1 upto 100:
(0.6i*cosd(361i),0.6i*sind(36i)) endfor;
draw p;
drawoptions(); 4 68

The shape of the end of each line is determined by the internal variable linecap. When lines
change direction, the shape of the corner is determined by linejoin. Figure 1 illustrates both.

rounded (default) rounded (default)
linecap := squared linejoin := beveled
butt mitered

A long spike may be produced when mitered lines meet at an acute angle. METAPOST changes

the join shape to beveled if
miter length

- - > miterlimit.
line width

15

3 Types

linecap — rounded squared butt
linejoin

3
rounded O O O
beveled O O O
mitered O O O

Figure 1: The effect of linecap and linejoin, drawn withpen pensquare scaled 8

The default value of the internal variable miterlimit is 10.0; it can be changed by assignment.
For a sequence of draw (§5.1.3:29) and £ill (§5.1.5:30) commands with a particular kind of
pen, use

drawoptions ((text))

to set the pen characteristics and

drawoptions ()

to restore the defaults. The argument (text) can specify dashed (§4.2:22), withcolor (§3.3:11),
and withpen (§3.6:14) values.

drawoptions(
withcolor 0.8 green
withpen pensquare scaled 4);
d = 10;
draw unitsquare scaled 2d shifted (-d,-d);
draw fullcircle scaled 4d;
drawoptions();

16

26

3 Types

3.7 Transforms

A variety of affine transformations can be applied to pictures. These are transform expressions
(all angles are measured in in degrees):

(z,9) rotated 9 =2 (xcosf —ysinb, zsinh + ycosb)

(x,y) slanted a 2 (x 4+ ay,y)

(z,9) scaled a =2 (ax,ay)

(z,y) xscaled a 2 (az,y)

(z,9) yscaled a 2 (z,ay)

(x,y) shifted (a,b) 2 (x+a,y+0b)

(z,9) zscaled (a,b) £ (az — by, bx + ay)

(r,y) reflectedabout (p,q) £ The reflection of (z,y) in the line (p, q).
(r,y) rotatedaround (p,0) 2 (z,y) rotated about point p through angle 6.

Transforms are applied by writing a transform expression after a picture expression. Transform
expressions can be combined by concatenating them.

dotlabel.bot(btex (0,0) etex, origin);

path bx; H
bx = unitsquare scaled 10;]
draw bx shifted (0,36); # 8
draw bx xscaled 1.6 shifted (0,24); g
draw bx slanted 0.5 shifted (0,12); (0,0)

draw bx rotated 30;
As usual, the type may be used as a predicate:

A . .
transformt¢ = true if ¢ is a transform.

Variables of type transform may be declared. If ¢ is a transform variable, then
p transformed ¢

is the picture p transformed by t and
inverse ¢

is the inverse of ¢. The constant identity is a transform that has no effect:

draw p transformed identity = drawp

The following example defines and applies a transform called reflect.

transform reflect;

reflect = identity xscaled -1;

draw btex Mirror, mirror, on the wall etex
transformed reflect; # 27

[lsw odd o roTtina 1oT1ilM

17

3 Types

A transform has six parameters. The mapping from (z,y) to (z/,7') is given, in homogeneous
coordinates, by

T toe loy Uz T
Y = tyz Ty 1ty)
1 0 0 1 1

The values of the parameters for a transform 7" are referred to in METAPOST as

ty = xpartT ty = ypartT
tze = xxpartT ty: = yxpartT
tyy = xypartT tyy = yypartT

Transforms may be defined by equations. Each equation says that a point p is mapped to a point
p’ and determines two of the transform parameters; consequently, three equations are needed.
In the following example, the transform t is defined by its effect on three points.

zl = (-20,0); z2 = (-40,15);
z3 = (0,20); z4 = (0,30);
z5 = (20,0); z6 = (35,-20);

draw fullcircle scaled 40;
drawarrow zl1--z2;
drawarrow z3--z4;

28

drawarrow z5--z6;

transform t;

z1 transformed t = z2;

z3 transformed t = z4;

z5 transformed t = z6;

draw fullcircle scaled 40 transformed t;
The parameters themselves can be used to define the transformation. For example, the equations

xxpart t = yypart t;

xypart t = -yxpart t;
specify that transform t preserves shapes. Two additional equations, defining the effect of t on
two points, are required to define t completely.
The following example combines several features of METAPOST: the command direction
(8§4.5:24) gives the direction of the tangent vector at a point on the curve; the command angle
(§3.4:12) converts this direction to an angle 6; rotating by 6 + 90° gives a direction normal to
the curve; and the command point (§4.5:24) gives the position of a point on the curve.

path p;

p := fullcircle xscaled 100 yscaled 40;

draw p;

for i = 0 upto 40:

t := i/5; # 47

draw ((0,0)--(3,0))
rotated (angle direction t of p - 90)
shifted (point t of p);
endfor;

18

3 Types

3.8 Pictures

Anything that can be drawn by METAPOST can be stored in a picture variable. Several primi-
tives, including draw (§4:21), store their results in the internal variable currentpicture. Pic-
tures can be transformed (§3.7:17).

The following expressions yield a picture:

sinfont f : string s set in font f (§3.2:10)

btex ... etex : raw TEX strings (§5.1.1:28)
TEX(...) : processed TEX strings(§7.3 : 43)
nullpicture : an empty picture
currentpicture : the “current” picture, destination of draw, etc.

These operators return a value associated with a picture p:

center p £ the centre of D.

length p £ the number of components of p.
llcorner p £ the lower left corner of p.
lrcorner p 2 the lower right corner of p.
ulcorner p 2 the upper left corner of p.

1>

urcorner p the upper right corner of p.

After defining the picture p with the commands

picture p;
p = btex $\displaystyle\int_0~\infty e~{-x} \, \sin x \, dx $ etex;

we can draw the picture and its corner points:

draw p;

dotlabel.ulft("UL", ulcorner p); UL, oo JUR
dotlabel.urt ("UR", urcorner p);) e " sinzdr
dotlabel.11ft("LL", llcorner p); LL ‘LR

dotlabel.lrt ("LR", lrcorner p);

The operators 1llcorner, lrcorner, ulcorner, and urcorner define the bounding box of a
picture. They can be used to measure the size of a box. Following on from the above example,

pair dim;

dim := (urcorner p) - (llcorner p);
width := xpart dim;

height = ypart dim;

gives width = 71.3919 and height = 23.1722.

If the bounding box is not what you want, you can change it. The command

19

3 Types

setbounds v to p

makes the picture variable v behave as if its bounding box is the path p.

picture p;

p = btex $\displaystyle\sum_{n=1}"{\infty} {1 \over n}$ etex;

path q;

q = bbox p shifted (20,20); ii‘l

setbounds p to q; —n

draw p;

draw q; # 67

Recent versions of METAPOST include a macro image that can be used in places that would
otherwise require currentpicture. The expression

image ((seq))

yields the picture object constructed by the sequence (seq) of drawing commands.

picture smiley;
smiley := image(
draw fullcircle scaled 40;
draw halfcircle scaled 20 rotated 180;
filldraw fullcircle scaled 3 shifted (-10,10);
filldraw fullcircle scaled 3 shifted (10,10);
);
draw smiley; 470

The following predicates can be applied to any object, but are most meaningful for parts of a
picture. A “stroked picture component” is a part of a picture that was drawn by moving a pen
(as opposed to setting text, etc.). These predicates can be used to analyze the structure of a
picture (§5.2.3:32).

bounded z = zisa picture with a bounding box
clipped x 2 x is a picture that has been clipped

dashpart x £ s the dash pattern of a path in a stroked picture

filledz 2 = is a filled outline

pathpart x £ s the path of a stroked picture component
penpart x 2 2 is the pen of a stroked picture component
strokedz = = is a stroked line
textualz 2 a is typeset text

3.9 Lists

Lists have a rather ghostly existence in METAPOST: there is no type list, but there are a few
constructions that create and consume lists.

20

4 Paths

The function scantokens converts a string to a list of tokens. The expression z step d until y
generates the list z, z + d, x + 2d, . . ., stopping when x 4+ nd > y. For the common case d = 1,
there are macros upto and downto:

upto step 1 until

1]>1>2

and downto step -1 until

The for statement (§5.2.3:32) has a form
for (var) = (list): (seq) endfor

which assigns the variable (var) to each item in (list). The list can be an actual list of tokens
separated by commas, as in

for i =1, 2, 4, 8, 16: ... -endfor
or a list generated by scantokens, as in

for i = scantokens("1, 2, 4, 8, 16"): ... endfor

4 Paths

Paths are piecewise straight lines, curves, and any combination of these. Path variables of type
path may be declared and there are various kinds of path expressions. The following examples
use the command draw (§5.1.3:29) to draw paths.

4.1 Straight lines

The binary operator ‘--’ constructs a straight line between its point operands. It may be used
in a sequence, so that

draw z0 -- z1 -- z2 -- z3;

draws three line segments, connecting z0 to z1, and so on.

If the last point is the internal name cycle, the last line segment returns to the starting point.
The keyword cycle can also be used as a predicate:

cycle p 2 trueif path p is a cycle

The expression p & q yields the concatenation of the paths p and g, provided that the last point
of p is identical to the first point of q.

21

4 Paths

4.2 Dots and Dashes

The general syntax for a dashed line is:
draw (path) dashed (pattern)

The basic patterns are:

evenly : evenly-spaced dashes, 3 bp long,
and withdots : dots 5 bp apart.

Patterns may be transformed (§3.7:17):

shifted (pair) : each dash is displaced by (pair),

and scaled (numeric) : each dash is scaled by (numeric).

draw (0,30)--(120,30) dashed withdots;

draw (0,20)--(120,20) dashed evenly; ____________________
draw (0,10)--(120,10) dashed evenly shifted (3,3); = -------------_.
draw (0, 0)--(120, 0) dashed evenly scaled 1.5; @~~~ "~~~ 777777° # 3

Dashed and dotted lines are best drawn using a pen with a circular nib (§3.6:14).

4.3 Circles, Disks, and Arcs

The command fullcircle draws a circle with unit diameter at the origin. Apply transfor-
mations (§3.7:17) to the circle to modify the size and position. The command halfcircle is
similar to fullcircle but draws only the part of the circle above the X axis. The command
quartercircle draws only the first quadrant of the circle.

draw fullcircle scaled 50;

draw halfcircle scaled 40;

draw quartercircle scaled 30;

filldraw fullcircle scaled 20 withcolor 0.3white;

14

General arcs can be drawn using the subpath command (§4.5:24). The path length of a full
circle is 8, and so one unit corresponds to 45°. Thus the arcs in the picture below have lengths
of 135°, 225°, and 315°.

draw subpath (0, 3) of fullcircle scaled 20; ~
draw subpath (0, 5) of fullcircle scaled 30; # 38

draw subpath (0, 7) of fullcircle scaled 40;

22

4 Paths

4.4 Curves

3 9

The binary operator
lines. The command

is used like ‘==’, but it draws cubic Bézier curve instead of straight

draw z0..zl1..z2..2z3;

draws a Bézier curve that passes through the points z0, z1, z2, and z3.

The binary operator ‘. . .’ is similar to ¢ . .’ but tries to avoid inflection points. The difference
between ‘. . and ‘. . .’ is generally small, but can be seen in the following example, in which

the lower curve uses ‘. . . .

z0 = (0,0); z1 = (50,25); z2 = (150,50);

A\

draw zO0{dir -20} .. z1 .. {dir 30}z2; # 53
draw (zO0{dir -20} ... z1 ... {dir 30}z2) shifted (0,-10);

The binary operator ‘---"1is similar to ‘-=’ but ensures a smooth transition between straight

and curved sections of a path, as illustrated in the two examples below.
draw (0,0) -- (25,0) .. (50,25); J # 51
draw (0,0) --- (25,0) .. (50,25); J # 52

The direction of the curve may be specified at a point by a qualifier {p}, in which p is a pair
representing a direction (§3.5:13). The qualifier may be placed either before or after the point.

for i = 0 step 30 until 120:
draw (0,0){dir i} .. (100,0);
endfor;
12

The curvature of the curve can be specified at its end points using curl. The argument of curl
can have any positive value; smaller values give smaller curvature.

draw (0,0){curl 1} .. (50,30) .. {curl 1}(100,0);
draw (0,0){curl 5} .. (50,-30) .. {curl 5}(100,0);
4 44

23

4 Paths

The tension of a curve may be changed between any pair of points. The minimum value of
tension is %; the default value is 1; higher values give straighter curves.

for 1 = 1 upto 5:
draw (0,0){dir 90} .. temsion i .. {dir 270}(100,0);
endfor;

43

Control points are points that are not on the curve but which “attract” the curve. They can be
specified between points with syntax “controls p and ¢”, where p and ¢ are points.

zl (10,25);
z2 (90,25);
dotlabel("", z1); # 24

dotlabel("", z2);
draw (0,0) .. controls z1 and z2 .. (100,0); //////’_—__\\\\\\\

4.5 Parametric Paths
A path may be considered as a set of points {(X (¢), Y (¢)}, where ¢ is the path parameter. Given
a value of ¢, we can find the corresponding point (X (¢),Y(¢)) on the path and the direction of

the path. Conversely, given a point or a direction on the path, we can find the value of t. We
can use t to find where curves intersect and to extract parts of curves.

29 24
% &7 29
10
25
Z1 Z8 z3

Figure 2: Parametric curves

We illustrate concepts related to parametric curves using Figure 2. First we define four key
points and draw the path, a, through them.

z1 = (0,0);

z2 = (75,75);

z3 = (150,0);

z4 = (225,75);

path a;

a=2z1.. z2 .. z3 .. zZ4;
draw a;

The path has a length associated with it:

24

4 Paths

show length a; >> 3

It is convenient to think of the path being drawn by a point which moves along it, starting at
time 0 and ending at time 3. The “times” of the control points are 0 for z1, 1, for z2, 2 for z3,
and 3 for z2. The expression point. . .of finds the point on a path corresponding to a particular
time (note the position of z5 in the diagram):

z5 = point 2.5 of a;
We can find the direction of the path, expressed as a tangent vector, at any time.
show direction 0 of a; >> (-19.5705,47.24738)

If we prefer, we can work with the arclength instead of the time:

lena = arclength a;

show lena; >> 378.67822
tl = arctime lena/5 of a;
show t1; >> 0.56165

z6 = point tl1 of a;

The expression subpath (t1,t2) of p returns the part of the path p between times ¢; and ¢o.
The effect of

draw subpath (0,tl1) of a shifted (-10,0);

can be seen in Figure 2 as the short arc on the left.

We can find the time on a path when the direction first achieves a particular value:

t2 = directiontime (1,-1) of a;
z7 = point t2 of a; >> 1.21132
show t2;

The straight line in Figure 2 is drawn as path b with the commands:

z8 = (25,0);
z9 = (200,75);
path b;

b =2z8 -——- z9;
draw b;

The point of intersection of paths a and b is given by:
z10 = a intersectionpoint b;
and the command

show a intersectiontimes b; >> (1.5,0.5)

shows that the intersection occurs at time 1.5 for path a and at time 0.5 for path b. If the paths
a and b do not intersect, the result is (-1,-1).

The expression

25

a cutbefore b

4 Paths

yields the part of path a from z1 to z10 and the expression

a cutafter b

yields the part of path a from z10 to z4.

A circle drawn by METAPOST has eight control points:

diam =100;

rad = 0.5*xdiam+8;

path circ;

circ = fullcircle scaled diam;
draw circ;

for i = 0 upto 7:

dotlabel("", point i of circ);

ang := 45 * i;

label(decimal i, (radxcosd(ang),

endfor;

Summary of path expressions:

Path expressions yielding boolean:
pathp
cyclep

Path expressions yielding numerics:
length a
arctime ¢ of a

directiontime d of «

arclength a

Path expressions yielding pairs:
point ¢t of a

directiont of a

directionpoint d of a
a intersectionpoint b

a intersectiontimes b

Path expressions yielding paths:
fullcircle
unitsquare

bbox a

reverse a

> e

1>

> e e

e e e e

1>

11>

> e

rad*sind(ang)));

p is a path
p is a cycle (closed path)

the value of ¢ at the end of a
the value of ¢ at which the length of a is ¢

the value of ¢ at which a first has the direction d
the total arc length of a

the position of a at time ¢

the direction of a at time ¢

the first point at which the direction of a is d
the point at which a intersects b

the pair (¢4,1p) of intersection times

the unit circle (origin at centre)

the unit square (size 1 x 1, origin at lower left corner)

the bounding box of path a
the path a drawn backwards

26

77

4 Paths

subpath (¢1,t2) of a 2 the part of a for which t; <t <ty

a&b the concatenation of paths a and b

a cutbefore b the part of a before its intersection with b

> e e

a cutafter b the part of a after its intersection with b

4.6 Path Constructors

The following functions and macros construct paths:

reverse p 2 the path p with its direction reversed
unitsquare E (0,0) --(1,0) --(1,1) --(0,1) -- cycle
bbox p 2 llcorner p -- lrcormer p -— urcorner p -- ulcorner p -- cycle

The effect of reverse is defined by
point t of reversep = point (lengthp—t)of p

The unitsquare can be transformed (§3.7:17) to produce an arbitrary parallelogram. The
macro bbox, applied to a picture p, returns the bounding box of p.

picture p;

p = btex $\spadesuit \heartsuit \diamondsuit \clubsuit$ etex; [AT0H]
draw p; 7 19
draw bbox p;

The command buildcycle is especially useful for boundaries of shaded areas (§5.1.5:30). Given
several paths, buildcycle tries to piece them together to form an enclosed figure, which is
returned as the result of the expression. Draw the bounding path, if required, after shading the
interior area with filldraw.

path p([];

pl = (10,-5) -- (10,50);

p2 = (-5,0) -- (90,0);

p3 (80,-5) -- (80,10);

p4 = (10,40) for i = 2 upto 9: # 41
(10*xi, 40/i) endfor;

p5 = buildcycle(pl, p2, p3, p4);

filldraw p5 withcolor 0.7 white;

draw pl; draw p2; draw p3; draw p4;

27

5 Commands

Font Name Sizes: s =

Bold cmb(s) 10

Bold extended cmbx(s) 5,6,7,8,9,10,12
Italic cmti(s) 7,8,9,10,12
Roman cmr(s) 5,6,7,8,9,10,12,17
Sans serif cmss(s) 8,9,10,12,17

Sans serif italic cmssi(s) 8,9,10,12,17
Slanted cmsl(s) 8,9,10,12

Small caps cmesc(s) 10

Typewriter cmtt(s) 8,9,10,12

Typewriter italic cmitt(s) 10
Typewriter slanted cmsltt(s) 10

Figure 3: IXIEX fonts

5 Commands

5.1 Drawing Commands
5.1.1 btex and verbatimtex

The command btex (text) etex invokes TEX to process (text) and returns the result as a picture:

draw btex $\sqrt{x"2+y~2}$ etex; /22 + 42

Commands between btex and etex are written in TEX, not I¥TEX, and the text is set in HR
mode. For example, $$... $$ does not work, but $\displaystyle ... $ usually gives the
right effect. For more elaborate effects, use the TEX package (§7.3:43).

Text is set in the default font, which is usually cmr10. The default font can be changed by
assigning to the internal variable defaultfont. The size of the text is determined by the
default scale, which is 1. The scale can be changed by assigning to the variable defaultscale.

The command verbatimtex (text) etex is similar, but does not produce a picture. It is used to
configure TEX for subsequent processing. For example, the following commands define the font
commands \bkm to be 11pt Bookman and 1it to be 10pt Typewriter:

verbatimtex
\font\bkm = pbkli scaled 1100
\font\lit = cmtex10 scaled 1000
etex

These fonts can then be used in a btex command:
label.bot (btex\1lit server etex, 0.5[a.e, b.wl);

Figure 3 shows some of the standard IXTEX fonts.

28

17

5 Commands

The command verbatimtex can be used to create an environment in which IXTEX can be used
in btex commands. The following METAPOST file creates a ITEX table:

verbatimtex

%&latex
\documentclass{article}
\begin{document}

etex

beginfig(1);
label(btex \begin{tabular}{c} First\\Second \end{tabular} etex, origin);
endfig;

end

5.1.2 clip

The command
clip p to b

draws all parts of the picture p that lie within the boundary b. The picture p must be given as
a picture variable, not a picture expression. The argument b is a path.

for i = -50 step 5 until 50:
draw (i,-50) -- (i+100,50);
endfor;
path c; # 54
¢ = fullcircle scaled 70 shifted (50,0);
clip currentpicture to c;
draw c;

5.1.3 draw

The command
draw p

draws the path or picture defined by the picture expression p. A picture can be erased by
drawing it with the background colour:

undraw p 2 draw p withcolor background

29

5 Commands

5.1.4 drawarrow

The following commands draw paths with arrows. The argument of each of these commands is
a path, not a picture.

drawarrow p : draw path p with an arrow at the end
drawarrow reverse p : draw path p with an arrow at the start
drawdblarrow p : draw path p with an arrow at both ends

The size of the arrow head is determined by ahlength and ahangle. These internal variables
have default values ahlength = 4 and ahangle = 45°, respectively. The code in the following
example draws an arrow with default values and another arrow with length 10 and angle 30°.

begingroup;

drawarrow (0,30) -- (60,30);
interim ahlength := 10;

_—
interim ahangle := 30; # 65
drawarrow reverse ((0,0) -- (60,0));
-
endgroup;
5.1.5 fill

The following commands “paint” areas of the figure. The path must be a cycle (§4.1:21),
otherwise the paint may leak out.

fill p : paint the area enclosed by path p with black
fill p withcolor ¢ : paint the area enclosed by path p with colour ¢

There are some useful macros that use fill:

filldraw p draw (£ill p)

filldraw p withcolor ¢ draw (£fill p withcolor c¢)

> e >

unfill p £ill p withcolor background

Filling can be used to avoid tricky coding with cutbefore and cutafter. In this example,
filldraw erases the part of the line that would be inside the circle at z2.

z1 = (0,20); z2 = (0,-20);

draw z1--z2;

filldraw fullcircle scaled 20 shifted z2 withcolor white; # 37
draw fullcircle scaled 20 shifted z1,;

draw fullcircle scaled 20 shifted z2;

30

5 Commands

5.1.6 label

The command
label (suffix) ((picture expression) , (pair))

writes a label. (picture) describes the label to be written. It is usually a string (§3.2:10) or
btex ... etex (§5.1.1:28). The (pair) determines the position of the label. The (suffix) may
be omitted; if it is present, it must be one of

.1ft .rt .top .bot .ulft .urt .11ft .Irt

and it defines the position of the label with respect to (pair).

The command dotlabel is similar to 1label but draws a large dot at the labelled point.

draw (0,0) -- (30,20) -- (-30,20) -- cycle; (=30, 20) (30,20)
label.ulft(btex (—30,20) etex, (-30,20)); v
label.urt (btex (30,20) etex, (30,20)); (070)
dotlabel.bot (btex (0,0) etex, (0,0)); ’ 41

The command dotlabels provides an abbreviation that can be used when all of the points to
be labelled have the form z(suffix) and the suffixes are suitable for use as labels.

z.alpha = (0,0);

z.beta = (20,20); beta
z.gamma = (40,0); alpha gamma
dotlabels.top(alpha, beta, gamma); * *

418

The command thelabel is also similar to label but returns the result as a picture without
drawing it. Thus:

label(p, z) 2 draw thelabel(p, 2)

5.2 Non-drawing Commands
5.2.1 drawoptions

The command drawoptions({text)) adds the options specified by (text) to all drawing com-
mends until it is cancelled by the command drawoption(). The options allowed in (text) include
dashed (§4.2:22), withcolor (§3.3:11), and withpen (§3.6:14). For example:

drawoptions(withcolor blue);
drawboxed (fred) ;
drawoptions();

The options in the scope of drawoptions affect only the commands for which they “make sense”.
For example, if a picture is drawn with drawoptions(dashed evenly), all of its paths will be
drawn with dashes, but its labels will not be affected.

31

5 Commands

5.2.2 filenametemplate

By default, METAPOST reads from a file called (jobname).mp and writes the output created
by beginfig(n) ... endfig to jobname.n. The name of the output file can be changed by
including a command of this form near the beginning of the input file:

filenametemplate (format string) ;

The resulting file name is the (format string) after escape sequences have been processed. Fig-
ure 4 lists the escape codes that METAPOST recognizes.

%% Percent sign

%J Job name

%6 c The argument of beginfig
%oy Year

%6m Month

%6d Day

%0H Hour

%oM Minute

Figure 4: Escape sequences for filenametemplate. The symbol § stands for an optional deci-
mal digit (0,1,2,...,9) that sets the size of the string.

Suppose that the input file is doc.mp. By default, METAPOST behaves as if
filenametemplate "%j.%c";

has been executed and generates figure files called doc. 1, doc. 2, etc. If the METAPOST program
included the command

filenametemplate "doc-%4y-%3c.mps";

then the output file names would be doc-2007-001 .mps, doc-2007-002.mps, etc. This is useful
for version of XTEX that do not recognize numbers as file extensions.

5.2.3 for

The METAPOST loop has the general form:

for (name) = (list):
(seq)
endfor
Although list is not a type of METAPOST, there are expressions that generate lists (§3.9:20).
For example:

for n = 1 upto 10:
show x;
endfor

32

5 Commands

in which upto is an abbreviation, as is downto:

1>

upto step 1 until

1>

and downto step -1 until

The numerical values do not have to be integers:

>> 0
>> 0.
for x = 0.5 step 0.1 until 1.5: 0.1
>> 0.20001
show x; >> 0.30002
endfor;
>> 0.90005
A list of expressions is accepted:
for e = 1, 256.1, "done": >> 1
show e; >> 256.1
endfor; >> "done"

There are not many METAPOST expressions that yield lists of tokens: one of them is scantokens
(§3.9:20). Consequently, for and scantokens are often used together (§9.6:52).

If there are no natural loop variables, use
forever: (seq) exitif (pred); (seq) endfor

or
forever: (seq) exitunless (pred); (seq) endfor

A for loop can be used to obtain the parts of a picture. The effect of
for ¢ within (picture expression) : (loop) endfor

is to bind each component of the picture in turn to ¢ and then execute the text in (loop). Various
predicates and selectors may be used in (loop), including stroked, filled, textual, clipped,
bounded, pathpart, penpart, and dashpart. Figure 5 provides a simple example.

Like its relatives TpX and metafont, METAPOST is more like a macroprocessor than a formal
language. This means that it is often possible to arbitrary chunks of text in a for loop, not just
complete expressions. The shading example on page 27 illustrates this kind of usage.

5.2.4 if

Tests can be used in conditional statements which have the general form

if (pred): (seq)
else: (seq)
fi

Compound conditional statements use elseif:

33

5 Commands

draw (0,0) -- (100,0);

filldraw fullcircle scaled 50;

label.bot("line", (50,0));

picture p;

p = currentpicture;

show "p has " & decimal(length(p))
& components.";

n = 0;
string msg;
for i within p:

>> "p has 3 components."
n:=n+ 1;

>> "Component 1 is stroked"
>> "Component 2 is filled"
>> "Component 3 is textual"

msg := "Component " &
decimal n & " is";

if stroked i:
msg := msg & " stroked";

fi;
if filled i:

msg := msg & " filled";
fi;

if textual i:
msg := msg & " textual";
fi;
show msg;
endfor;

Figure 5: Using for...within to obtain a partial analysis of a picture.

if (pred): (seq)
elseif (pred): (seq)
else (seq)

fi

For example (§7.1:39):
if pos = "top":
label.top(title, name.n);
elseif pos = "bottom":

label.bot(title, name.s);
fi;

5.2.5 message

The command message takes a string expression as its argument and displays the string on
the console.

34

5 Commands

5.2.6 readfrom

The effect of
readfrom (file name)

is to read one line from the named file and return the line as a string. If the file cannot be
read, or if end of file has been reached, the string returned is EOF, which contains just the null
character (i.e., EOF = "\0").

If readfrom (file name) is executed again after it has returned EOF, the file is read again from
the beginning.

See (§9.6:52) for an example of the use of readfrom. It is also possible to write to a file

(§5.2.9:: 36).

5.2.7 save

The command save, followed by a list of variable names, saves the values of these variables
and restores them again at the end of the scope, effectively making these variables local to the
current scope. See also (§2.10:6) and (§6:36).

5.2.8 show and friends

The command
show e

writes >> followed by the value of the expression e to standard output. If the expression cannot
be expressed in a simple textual form, METAPOST writes the type instead.

show (0,0) -- (10,0); >> path

There are variants of show that are used less often but can be handy for debugging:

showdependencies £ the known dependencies for a set of equations
showtoken 2 the parameters and replacement text of a macro
showvariable 2 the properties associated with a name

The variable showstopping controls the behaviour of METAPOST after it has executed a show
command. If showstopping > 0, METAPOST pauses after each show command.

35

6 Macros

5.2.9 write

The effect of the command
write (string expression) to (file name)

is to write one line to the named file. If the file is not already open, METAPOST opens it before
writing. The file is closed when the METAPOST program terminates, or explicitly by executing

write EOF to (file name)

It is also possible to read from a file: (§5.2.6:35).

6 Macros

METAPOST provides many ways of defining macros. Here we describe just the most basic and
useful techniques.

6.1 def macros
Simple macros have the form

def (name) = (seq) enddef

Simple macros with parameters have the form

def (name) ((parameters)) = (seq) enddef

Following the macro definition, each occurrence of (name) is replaced by (seq), with parameters
replaced by arguments when applicable. If the sequence (seq) ends with an expression, the value
of that expression becomes the value of the macro. Note that there is no semicolon after the
expression:

def hyp(expr a, b) =
sqrt(axa + bxb)
enddef;

show hyp(3,4);
>> 5

We can obtain a simple three-dimensional effect by adding a shadow to an outline. If the light
source is above and to the left, the shadow should be below and to the right. The macro shadow
gives a shadow to any path that can be filled — that is, to any closed path.

36

6 Macros

def shadow(expr p) =
filldraw p shifted (3,-3) withcolor 0.7 white;
filldraw p withcolor white;
draw p;

enddef;

shadow(unitsquare scaled 20);

shadow(fullcircle scaled 20 shifted (40,0));

path p;

p = (0,0)--(0,20)--(20,40)--(50,40)--
(30,20)--(30,0)--cycle;

shadow(p shifted (70,-20));

There are three kinds of macro parameter, distinguished by writing one of the keywords expr,

suffix, or text before the parameter list.

e An expr parameter can be used as a variable in the body of the macro. Its value can be
constrained by equations but cannot be re-assigned. The following macro says that a, b, c,
and d are symmetrically placed around the origin but their separation is not known until

z1 is defined:

def vx(expr a, b, ¢, d) =
a+c=(0,0);

b +d = (0,0);

xpart a = xpart d;

ypart a = ypart b;
enddef;

vx(z1,z2,z23,z4);
zl = (1,1);
show z1; show z2; show z3; show z4;

>>
>>
>>
>>

1,1
(-1,1)
(-1,-1)
(1,-1)

e A suffix parameter is bound to an initializing expression but may also be used as a
variable name. The macro showfirst would be illegal with an expr parameter, but is

allowed with a suffix parameter:

def showfirst(suffix a) = show al[0]; enddef;

e A text parameter is bound to an arbitrary sequence of tokens. When its name is encoun-
tered in the body, METAPOST simply substitutes the corresponding argument and parses

the result. For example, if we define

def doIt(text cmd) = cmd (0,0)--(5,5); enddef;
then doIt(draw) draws the path but doIt(show) simply displays it.

If a macro has two or more different kinds of parameters, there must be a separate parameter

list for each kind:
def tricky(expr a, b)(suffix p) = ... enddef;

However, the corresponding invocation has just a single list of arguments:

tricky (2.3, xpart q, z);

37

O

4 46

7 Macro Packages

6.2 vardef and other macro forms

A macro definition may be introduced by vardef instead of def. The most useful difference is
that the body of a vardef macro is a group. A macro such as area can be used in the same
way as a function in other languages:

vardef area(expr a, b, c) =
save s;
s := 0.5%(at+b+c);
sqrt (s*(s-a)*(s-b)*(s-c))
enddef;

show area(3,4,5); >> 6

The name of a vardef macro may be a compound containing suffixes. Within the macro, @ is
the last token of the macro call and #@ is everything that comes before the last token. Macros
defined with vardef can be used to define special behaviour for particular variable names. For
example, the special relationship between x, y, and z is a consequence of the macro definition

vardef z@# = (xQ#, yO#) enddef;

There are other forms of macro definition for which a full description goes beyond the scope
of this manual. For example, macros can be used to define unary and binary operators. After
defining

vardef neg primary x = -x enddef;

we can use neg to negate numeric values and pairs. For example,

neg((3,4)) >> (-3,-4)
Similarly, after defining a midpoint operator
primarydef p mp q = 0.5[p,q] enddef;

we can write

zl = (0,0), mp
z2 = (0,40);
draw zl —-- z2;

label.rt("mp", z1 mp z2);

7 Macro Packages

Many METAPOST macro packages have been written, by Hobby and others. In this section,
we describe a few of them. To use a package, include this command at the beginning of your
METAPOST program:

input (package name)

38

4 42

7 Macro Packages

7.1 Boxes

There is a standard macro package, called boxes, for drawing boxes. To use it, include this
statement at the beginning of your METAPOST program:

input boxes

The boxes produced by boxes have square corners. To get boxes with both square corners and
rounded corners, use

input rboxes

7.1.1 Creating and Drawing Boxes

To create a box, write
boxit . (box name) ((picture expression))

The package rboxes provides the command rboxit as well. It works in the same way as boxit,
but produces boxes with rounded corners.

To draw boxes, write
drawboxed (by, bo,...,b,)

where by, bs, ..., by, is a list of box names. The result of drawing a box is shown in Figure 6, in
which the shaded inner rectangle corresponds to the picture and the outer rectangle is the box
that is drawn. The box can be sized and positioned by applying the suffixes in Figure 6 to the
box name. For example, if the box name is bx, then bx.c is its centre, bx.ne is its top right
corner, and so on.

The values of ¢, dx, and dy are left unspecified. If METAPOST can infer their values from
constraints on the positioning points, it does so. If not, it gives them the default values

c = (0,0)
dx = defaultdx
dy = defaultdy

The values of defaultdx and defaultdy can be changed by assignment. For example:

defaultdx :
defaultdy :

20;
15;

The command drawboxed actually draws the boxes. Consequently, the best way to use boxes is
to follow this sequence:

1. Use boxit to create the boxes
2. Write equations that specify positional relations between boxes

3. Use drawboxed to draw the boxes

39

7 Macro Packages

nw n ne

g

e

o

SwW S se

Figure 6: Box variables

boxit.bl("left");

boxit.bm("middle"); middle
boxit.br("right"); @ right 4 30
bm.sw - bl.ne = (20,0);

br.nw - bm.se = (20,0);

drawboxed(bl,bm,br) ;

This example is similar, but illustrates the use of the package rboxes

boxit.sb("box with square corners"); |b°X with square °°rners|
rboxit.rb("box with rounded corners");

rb.c = sb.c + (100,0); # 75
drawboxed(sb, rb); (box with rounded corneré)

cuta(sb,rb);

7.1.2 Positioning Boxes

METAPOST provides another, shorter way of positioning boxes relative to one another. The
macro boxjoin takes as argument a list of equations, separated by semicolons, describing the
relationship between boxes a and b. The equations can be used to constrain both the positions
and the sizes of boxes.

boxjoin(a.sw = b.nw; a.se = b.ne); top
boxit.bt("top"); middle
bt.ne - bt.nw = (50,0);
boxit.bm("middle");
boxit.bb("bottom") ;
drawboxed (bt ,bm,bb) ;

bottom # 31

40

7 Macro Packages

The equation bt.ne - bt.nw = (50,0) sets the width for the first box and boxjoin ensures
that the other boxes have the same width. If it is omitted, the default size of the top box is
used as the width:

top
middle
bottomn

The constraints imposed by boxjoin can be removed either by calling boxjoin with different
equations or an empty argument.

boxjoin(a.e = b.w);

boxit.bl(btex b_1 etex); boxit.b2(btex $b_23% etex); |b1 |b2 | bs | bs | bs |
boxit.b3(btex b_3 etex); boxit.bd(btex b_4 etex);

boxit.b5(btex b_5 etex);
boxjoin();

boxit.b6(btex b_6 etex); b6.n = bl.s - (whatever,10);
drawboxed (b1,b2,b3,b4,b5,b6) ;

The path surrounding the box named b is bpath b. This is useful when boxes are joined by
arrows.

boxjoin(a.e = b.w - (20,30));

boxit.scan("scan");
boxit.parse("parse");

drawboxed(scan, parse);
drawarrow scan.c{dir 0} .. {dir 90}parse.c

cutbefore bpath scan
cutafter bpath parse;

In fact, this pattern occurs so often that it is a good idea to define a macro for it. To join two
boxes b1l and b2 with an arrow, write cuta(bl, b2), where:

vardef cuta(suffix a, b) =
drawarrow a.c —— b.c cutbefore bpath.a cutafter bpath.b;
enddef;

7.1.3 Oval Boxes

The macro circleit is similar to boxit except that the picture argument is enclosed in an oval
rather than a rectangle. The corner points are not defined, but the other points correspond to
boxit, as shown in Figure 7. Use drawboxed to draw the picture produced by circleit (not
“drawcircled”).

The path bpath c created by circleit is a circle unless at least one c.dx, c.dy, or c.dx — c.dy
is known. If any of these values are known, the path is an oval that contains the picture with a
safety margin defined by circmargin, a length with default value 2 bp.

Assigning to defaultdx and defaultdy, as explained above, does not work for circleit. How-
ever, their values can be assigned explicitly, as in this example:

41

36

33

7 Macro Packages

dx C dx

dy

Figure 7: Oval variables

circleit.wd("establishment");
wd.dy = 20;
drawboxed (wd) ;

establishment

35

Other commands associated with boxes include:

drawboxes(...) : draw the outlines of the listed boxes but not their contents
drawunboxed(...) : draw the contents of the listed boxes but not their outlines
picb : return the contents of the box b without its outline

Thus drawunboxed(b1,b2) is an abbreviation for

draw pic bi;
draw pic b2;

7.2 Graphs

John Hobby has written a graph package for METAPOST. A complete description of this package
is beyond our scope, but we have space for a simple example. The file hist.txt contains the
results of a simulated experiment in which a coin is tossed 50 times and the number of ‘heads’
are recorded. Each line of the file consists of two integers, as in the following extract:

23 96237
24 107870
25 112401
26 107747
27 96453
28 78692

42

7 Macro Packages

Before drawing graphs, the graph macros must be read from graph.mp. The following META-
PosT code is all that is needed to obtain Figure 8.

input graph

beginfig(1);
draw begingraph(4in,3in);
gdraw("hist.txt");
endgraph;

endfig;

1.2x10°

105 —

8x10% —

6x10* —

4x10* —

2x10* —

0_

I I I I I I
0 10 20 30 40 50

Figure 8: Simulated coin tossing

7.3 TEX

METAPOST does not process text between btex and etex. For example, if you write btex n etex,
METAPOST will typeset the character “n”, not the value of the variable n. The package TEX.mp
provides an operator TEX that overcomes this problem. The expression

TEX("$X_{" & decimal(n) & "}$")

returns a picture that can be used, for example, in a label command. For n = 0,1,2,..., the
pictures will be Xy, X1, Xo,....

The package also provides two further commands:

TEXPRE(s) defines text that will be passed to TEX before each TEX command
TEXPOST(s) defines text that will be passed to TEX after each TEX command

43

8 Debugging

For example, you can use IATEX in labels by including these two commands at the beginning of
your METAPOST program (char(10) generates a line break):

TEXPRE("%&latex" & char(10) & "\documentclass{article}\begin{documentl}");
TEXPOST ("\end{document}") ;

8 Debugging

It may seem odd to talk about “debugging” diagrams, but METAPOST is a programming lan-
guage. The advantages of the programming language approach should be obvious from earlier
parts of this manual; the disadvantages become clear when you actually try to use METAPOST.

As a simple illustration, suppose that you accidentally write “btext” instead of “btex”. If you
have written a few hundred lines of code, METAPOST’s response may be quite worrying:

D:\Pubs\MetaPost>mp figs

(figs.mpCreating figs.mpx...

makempx: mpto failed on D:\Pubs\MetaPost\figs.mp.
mp: The operation failed for some reason.

As with other kinds of programming, the best approach to METAPOST is to proceed slowly and
carefully with frequent tests. When METAPOST does fail, there is a good chance that the error
is in the last few lines that you have written.

Here are a few additional tips for getting errant METAPOST programs to work:

e Use show and its friends (§5.2.8:35) to check that variables have the values that you
expect.

e Use commands like dotlabel("z5", z5) to check that points are where you think they
are.

e When METAPOST fails, it often generates hundreds of lines of diagnostics. Sometimes, it
is easy to see what went wrong. If not, it is often quicker to identify the line of code that
METAPOST is complaining about, and to examine that line very carefully, than it is to try
and understand the diagnostic.

e Errors such as “inconsistent equation” may occur if you use the same variable names in
different figures. You can avoid this problem by using save (§5.2.7:35) for the variables
of each figure.

9 Examples

In the last section of this manual, we give some complete examples that illustrate the practical
use of METAPOST.

44

9 Examples

9.1 Euler Integration

The goal of this example is to obtain a figure like Figure 9 illustrating the error, e, of first-order
Euler integration. If f’ is the derivative of f:

fla+Az) ~ f2)+f(z) Az

Py

P

Py
Az

Figure 9: Euler Integration

The first step is to draw a suitable path. A Bézier curve is the simplest to generate with
METAPOST:

path c;
c = (0,0)dir 0 .. (150,100);
draw c;

Next, we choose a point on the path, P;:
t := 0.4;

pair P[];
P1 = point t of c;

The value of Ax is arbitrary, but we should choose a value large enough to make the diagram
readable. We can then compute Ay using the direction (i.e., slope) of the path at t.

dx := 60;
(dx, dy) = whatever * direction t of c;

With Az and Ay known, we can locate the other points that we need. P, is not labelled in
Figure 9; it is the third vertex of the triangle with hypotenuse P; Ps.

P4 P1 + (dx, 0);
P3 = P4 + (0, dy);
P2 = ¢ intersectionpoint (P4 -- P4+(0,100));

All that remains is to draw the lines and label the points and lengths:

draw P1--P4--P2;

draw P1--P3;

dotlabel.ulft(btex P_1 etex, P1);
dotlabel.ulft(btex P_2 etex, P2);
dotlabel.rt(btex P_3 etex, P3);

45

9 Examples

label.bot(btex Δx etex, 0.5[P1,P4]);
label.rt(btex Δy etex, 0.5[P4,P3]);
label.rt(btex e etex, 0.5[P3,P2]);

9.2 The Lorentz Transformation
The Lorentz transformation for inertial frames with relative velocity v is

xr = yx+yBet
ct’ = ~Bx+ et

where ¢ is the velocity of light, 8 = v/¢, and v = 1/4/1 — v2/c2. Assuming ¢ = 1, v = 0.5, writing
b for 8, g for v, and including a translation of 200 units, we can express the transformation in
METAPOST as:

b = 0.5;

g = sqrt(l - b *x b);

transform t;

xpart t = 200; ypart t = O;
XxXpart t = g; yxpart t = g * b;
xypart t = g * b; yypart t = g;

We illustrate the scenario shown on the left of Figure 10): a light flashes at a, is reflected by
mirrors at b and b/, and returns to the original point, displaced in time, at a’. We need eleven
points for the diagram; Figure 11 shows the numbering scheme. The scale is determined by two
constants, s and d:

s = 10;
d = 80;

It is easiest to define the z coordinates and the y coordinates separately:

x1 = x2 = x3 = 0;
x4 = x5 = x6 X7 = x1 + d;

x8 = x9 = x10 = x4 + d;
x11 = x8 + s;

yl =y4 = y8 = yl1 = 0;
y5 = s;

y2 =y9 =yd + d;

y6 = y2 + d;

y3 = y7 = y10 = y6 + s;

We draw arrows for the axes:

drawarrow zl —- z11;
drawarrow zl1 —-- z3;

solid lines for the time lines:

draw zl1 -- z3;
draw z4 -- z7;
draw z8 -- z10;

46

9 Examples

Figure 10: The Lorentz Transformation

3 7 10
6

2 9
5

1 4 8 11

Figure 11: Point numbering used in Figure 10

and dashed lines for the light rays:

draw z5 -- z2 dashed evenly;
draw z2 -- z6 dashed evenly;
draw z5 -- z9 dashed evenly;
draw z9 -- z6 dashed evenly;

These commands have drawn into currentpicture. We store them in the picture variable pic
and clear the current picture using the internal constant nullpicture:

picture pic;

pic := currentpicture;

currentpicture := nullpicture;

We next draw p twice, once as above, and once transformed:

47

9 Examples

draw pic;
draw pic transformed t;

We then label the original diagram:

label.
.rt(btex X etex, zl1l);
label.
label.
label.
label.
label.

label

11ft (btex 0 etex, zl1);

top(btex T etex, z3);
rt(btex a etex, z5);
1ft(btex b etex, z2);
rt(btex $b’$ etex, z9);
rt(btex c etex, z6);

and the transformed diagram:

label.
label.
label.
.rt(btex a etex, z5 transformed t);
label.
label.
label.

label

11ft (btex 0 etex, zl1 transformed t);
rt(btex X etex, zl1l1l transformed t);
top(btex T etex, z3 transformed t);

1ft(btex b etex, z2 transformed t);
rt(btex $b’$ etex, z9 transformed t);
rt(btex c etex, z6 transformed t);

The result is Figure 10. Note that the events b and b’ are simultaneous in the original diagram
but not in the transformed diagram, and that the light rays (dashed lines) have the same slope
(£1) in both diagrams.

This example would be slightly simpler if we included the labels in the first diagram. Then we
would not have to write them out twice. Since METAPOST transforms everything, however, the
labels would be distorted.

9.3 Dissipation

Figure 12 shows how the area between two trajectories of a dissipative system diminishes when
measured at constant time intervals. The code for drawing it uses point. . .of to obtain points
on the upper and lower curves, and buildcycle to construct the areas for shading.

Figure 12: Area reduction in a dissipative system

48

9 Examples

Pick four points as end points for the curves:

zl = (0,100); z2 = (160,0);
z3 = (0,60); z4 = (150,0);

Draw two curves, converging towards each other:

path p[];
pl = zi{dir 0} .. {dir 270}z2;
p2 = z3{dir 0} .. {dir 270}z4;

Construct pairs of lines joining corresponding points on the curves. The lines are not drawn, but
are used as arguments of buildcycle to create closed areas, which are shaded with filldraw.

for i = 0 step 2 until 11:

p3 := point i/11 of pl -- point i/11 of p2;
p4 := point (i+1)/11 of pl -- point (i+1)/11 of p2;
filldraw buildcycle(p3, pl, p4, p2) withcolor 0.7 white;

endfor;

Finally draw the curves p1 and p2, and a couple of lines, to bound the figure.

draw pl; draw p2;
draw zl1 -- z3; draw z2 -- z4;

9.4 Desargues’ Theorem

Figure 13 is obtained by the following construction.

Choose a centre of projection, O.
Draw a triangle, A1B1C1.
Draw the lines OA1, OAs, and OAs.

Draw another triangle, A3BC5, with the same centre of projection. That is Ao lies on
OA;, etc.

In METAPOST, this step is done by mediation. E.g., a2 = 0.35[al,0].

Find the points of intersection of corresponding sides of the triangles. For example, B1C}
and ByC5 intersect at Py.

In METAPOST, this step is also done by mediation. E.g.:
pl = whatever[bl,cl] = whatever[b2,c2];

Desargues’ Theorem states that the three points of intersection, Py, P, and Pj3, are
collinear.

Figure 14 shows the METAPOST code used the draw Figure 13. The label commands have been
put at the end to ensure that the black dots are drawn after the coloured lines that go through

them.

49

9 Examples

Figure 13: Desargue’s Theorem

9.5 Three Dimensions

Although METAPOST is basically two-dimensional, it can be tricked into drawing perspective
diagrams, giving the illusion of three dimensions. Many packages have been written for 3D
METAPOST pictures (§10:53). One technique is to use the three components of the type color
as XY Z coordinates. We give a simple example to illustrate the idea.

Assume that the viewpoint in 3D space is at (0,0, —d) and that we project onto the plane z = 0.
This projection maps the 3D point (z,y, z) to the 2D point (tz,ty) where ¢t = d/(z + d). The
macro perspective implements this transformation by converting a colour ¢ = (r, g, b) to a pair
(tr,tg):
vardef perspective(expr c) =
t := dist/(bluepart c + dist);
(t * redpart c, t * greenpart c)
enddef;

We use the colour array tp[] to represent the vertexes of a cube with side 2 centered at the
origin:

color tpl];
tp0 = (-1,-1,-1); tp4d = tp0 + (0,0,2);

50

9 Examples

pair all,bl],cl]l,pl], o;
o = (300,0);

al = (0,0); bl = (60,135); cl = (95,20);

draw al -- bl -- ¢l -- cycle withcolor red;
draw al -- o withcolor blue;
draw bl -- o withcolor blue;
draw cl -- o withcolor blue;

a2 = 0.35[al,0]; b2 = 0.2[bl,0]; c2 = 0.5[c1,0];

draw a2 -- b2 -- c2 -- cycle withcolor green;

whatever[b2,c2];
whatever[c2,a2];
whatever[a2,b2];

pl = whatever[bl,c1]
p2 = whatever[cl,al]
p3 = whatever[al,bi]

draw bl -- pl -- b2;
draw al -- p2 —- a2;
draw bl -- p3 —- b2;
draw pl -- p2 -- p3 dashed evenly;

dotlabel.rt(btex 0 etex, 0);

dotlabel.ulft(btex A_1 etex, al);
dotlabel.lft(btex B_1 etex, bl);
dotlabel.bot(btex C_1 etex, cl);

dotlabel.bot(btex A_2 etex, a2);
dotlabel.llft(btex B_2 etex, b2);
dotlabel.urt(btex $C_2% etex, c2);

dotlabel.lft(btex P_1 etex, pl);

dotlabel.bot(btex P_2 etex, p2);
dotlabel.top(btex P_3 etex, p3);

Figure 14: Programming Desargues’ Theorem

tpl = (1,-1,-1); tpb = tpl + (0,0,2);
tp2 = (1, 1,-1); tp6 = tp2 + (0,0,2);
tp3 = (-1, 1,-1); tp7 = tp3 + (0,0,2);

Since METAPOST supports linear operations on colours, we can scale and translate the cube
before using perspective with dist = 200 to transform the vertexes to the pair array p[]:

dist := 200;

51

9 Examples

pair pl];
for i = 0 upto 7:

pl[i] := perspective(40*tp[i]+(80,-70,30));
endfor;

Drawing the edges of the cube gives Figure 15:

draw pO--pl--p2--p3--cycle;
draw p4--p5--p6--p7--cycle;

draw pO--p4;
draw pl--p5;
draw p2--p6;
draw p3--p7;

Figure 15: Perspective view of a cube

9.6 Reading a File

This example illustrates the use of readfrom and scantokens. Suppose that the file "data.txt"
contains these two lines:

1, 2, x, "Go!"
"pi = ", 3.14159263

The code on the left produces the figure on the right:

52

10 Links

boxjoin(a.sw = b.nw; a.se = b.ne);
picture bl[];

i=0;
x = 99;
forever:
String line; Numeric: 1
line := readfrom "data.txt"; Numeric: 2
exitif line = EOF; Numeric: 99
string token, desc; String: Go!
for token = scantokens line: String: pi =
if numeric token: Numeric: 3.14159 4 72
desc := "Numeric: " &
decimal token;
elseif string token:
desc := "String: " & token;
fi;
boxit.b[i] (desc);
bl[il.e = bl[i]l.w + (100,0);
drawboxed(b[il);
i:=1i+ 1;
endfor;
endfor;

The outer forever loop reads each line of the file, checking for end of file. The inner for loop
uses scantokens to split the line into tokens. The type of each token is checked, using type
names as predicates, and put into a descriptor, desc. Finally, each descriptor is drawn in a box.

Note that the third token in the file is x and it is displayed as 99, the value of x in the program.
Tokens in a file are considered to be strings only if they are quoted, like "Go!".

10 Links

The TEX User’s Group — probably all that you will need: http://www.tug.org/metapost.html

A FAQ from the UK: http://www.tex.ac.uk/cgi-bin/texfaq2html?label=MP

Urs Oswald’s Very Brief Tutorial: http://www.ursoswald.ch/metapost/tutorial.html

METAPOST home page: http://ect.bell-labs.com/who/hobby/MetaPost.html

John Hobby’s home page: http://plan9.bell-labs.com/who/hobby/

Marc van Dongen’s contributions to METAPOST: http://www.cs.ucc.ie/ dongen/mpost/mpost.html
MetaFun by Hans Hagen: http://wiki.contextgarden.net/MetaFun

A WYSIWYG interface for METAPOST: http://w3.mecanica.upm.es/metapost/metagraf.php

A METAPOST generator for 3D: http://www.gnu.org/software/3dldf/LDF.html

53

http://www.tug.org/metapost.html
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=MP
http://www.ursoswald.ch/metapost/tutorial.html
http://ect.bell-labs.com/who/hobby/MetaPost.html
http://plan9.bell-labs.com/who/hobby/
http://www.cs.ucc.ie/~dongen/mpost/mpost.html
http://wiki.contextgarden.net/MetaFun
http://w3.mecanica.upm.es/metapost/metagraf.php
http://www.gnu.org/software/3dldf/LDF.html

Index

&, 11, 21, 27
*% 8
++, 8, 13
+-+, 8,13
--, 21
---, 23

., 23

[]7 14
3D, 50

abs, 13, 14

affine transform, 17
ahangle, 30
ahlength, 30

and, 9

angle, 14

angle, 14, 18

anonymous variable, 9

arc, 22
arclength, 26
arctime, 8, 26
area

shaded, 27
argument, 36
arithmetic, 12
array, 6
arrow, 30
assignment, 8

background, 12

bounded, 20, 33
bounding box, 19
boxes, 39

boxit, 39
boxjoin, 40

bp (big point), 4
bpath, 41

btex, 28, 43
buildcycle, 27, 48
butt, 15

c, 39
ceiling, 13
center, 19
char, 10
circle, 22
circleit, 41
circmargin, 41
clip, 29
clipped, 20, 33
cm, 4
cmykcolor, 10, 12
color, 10, 11, 50
comments, 4
comparison, 9
concatenation
of paths, 21
of strings, 11
constants
colours, 11
numerics, 12
pairs, 14
strings, 10

bbox, 26, 27 control points, 24

beginfig, 14, 32 conversion

beginfig, 2 abs (pair to numeric), 14
begingroup, 6 angle (pair to numeric), 14
beveled, 15 ceiling (numeric to integer), 13
big points, 4 char (ASCII to string), 10
binary operator, 7 decimal (numeric to string), 10
black, 11 dir (numeric to pair), 14
blackpart, 12 floor (numeric to integer), 13
blue, 11 round (numeric to integer), 13
bluepart, 12 str (suffix to string), 11
boolean, 9, 10 cosd, 13

bot, 31

54

curl, 23
currentpicture, 5, 19, 47
curve, 23

cuta(bl, b2), 41
cutafter, 27
cutbefore, 27
cyanpart, 12
cycle, 10, 21, 26

dashed, 31
dashed line, 22
dashpart, 20, 33
day, 12
decimal, 10, 13
declaration, 6
def, 36
defaultdx, 39
defaultdy, 39
defaultfont, 11, 28
defaultpen, 15
defaultscale, 11, 28
difference of squares, 8, 13
dir, 14
direction, 14

of curve, 23

represented by pair, 14
direction, 8, 18, 26
directionpoint, 8, 26
directiontime, 8, 26
ditto, 10
div, 13
division, 13
dotlabel, 31
dotlabels, 31
dotprod, 14
dotted line, 22
down, 14
downto, 21, 33
draw, 12, 29
drawarrow, 30
drawboxed, 39
drawboxes, 42
drawdblarrow, 30
drawoptions, 12, 16, 31
drawunboxed, 42
dx, 39
dy, 39

else, 33

Index

55

elseif, 33
endfig, 2
endgroup, 6
EQF, 35, 36
epsilon, 12
equality, 8, 9
equation, 8
erase, 29
etex, 43
evenly, 22
exitif, 33
exitunless, 33
explicit declaration, 6
expr

macro parameter, 37
expression, 7

path, 26
false, 9
fi, 33
file, 2
name, 32
read, 35, 52
write, 36

filenametemplate, 2, 32
£i11, 12, 30
filldraw, 12, 27, 30
filled, 20, 33
floor, 13
font, 28
for, 21, 32, 53
forever, 33, 53
fullcircle, 22, 26
functions
colours, 11
numerics, 13
pairs, 14
pictures, 19
strings, 10

green, 11
greenpart, 12
group, 6

halfcircle, 22
hypotenuse, 8, 14

identity, 17
if, 33

image, 20

in, 4

infinity, 12

inflection points, 23
infont, 11

inner product, 14
input, 38

input file, 2

interim, 7

internal variable, 5
intersection, 25
intersectionpoint, 26
intersectiontimes, 26
inverse, 17

known, 10

label, 31, 43
TEX, 28
left, 14
length, 12
length, 10, 19, 26
1ft, 31
line

corner, 15

end, 15

straight, 21
linecap, 15
linejoin, 15
list, 20
llcorner, 19
11ft, 31
local

variable, 6
loop, 32
lrcorner, 19
1rt, 31

macro, 36
magentapart, 12
makepath, 15
makepen, 15
mediation, 13, 14
message, 34
mexp, 13
mitered, 15
miterlimit, 15
mlog, 13

mm, 4

Index

56

mod, 13

month, 12
mproof, 3
mpversion, 2, 10
multidimensional array, 6

name, 5

local, 6

of output file, 32

of type, 6

of variable, 5
negative coordinates, 5
newinternal, 5
nib, 15
normal, 18

random number, 13
normaldeviate, 13
normalize, 14
not, 9
nullpen, 15
nullpicture, 19, 47
numeric, 10, 12, 13

odd, 10, 13
of, 8
operator, 7

assignment, 8
comparison, 9

difference of squares, 8

equality, 8
path, 21, 23
sum of squares, 8
or, 9
origin, 14
output
file name, 32
to console, 34, 35
to file, 2

painting, 30
pair, 10, 13
parameter, 36
of macro, 37
path
circle, 22
dots and dashes, 22
expression, 26
of box, 41
parametric, 24

Index

straight, 21 scantokens, 10, 21, 33, 52
path, 10, 21, 26 scope, 6
pathpart, 20, 33 secondary, 7
pc, 4 semicircle, 22
pen, 14 setbounds, 20
pen, 10 shading, 27, 30
pencircle, 15 shadow, 36
penoffset, 8 shifted, 17, 22
penpart, 20, 33 show, 35
pensquare, 15 showdependencies, 9, 35
pic, 42 showstopping, 35
pickup, 14 showtoken, 35
picture, 19 showvariable, 35
picture, 10 sind, 13
point slanted, 17

control, 24 sqrt, 13

Postscript, 4 squared, 15

printer’s, 4 step, 21
point, 8, 18, 26, 48 str, 11
postcontrol, 8 string, 10
precedence, 7 string, 10
precontrol, 8 stroked, 20, 33
predicates, 10 subpath, 8, 22, 27
primary, 7 substring, 8, 10
pt (printer’s point), 4 suffix, 5

suffix

quartercircle, 22 macro parameter, 37

random number, 13 sum of squares, 8, 13

rboxes, 39, 40 tag, 5

rboxit, 39 tangent, 18

read file, 35, 52 tension, 24

readfrom, 35, 52 tertiary, 7

red, 11 TEX, 43

redpart, 12 TEX, 28

reflectedabout, 17 text

remainder, 13 macro parameter, 37

reverse, 26, 27 textual, 20, 33

rgbcolor, 10, 12 thelabel, 31

right, 14 three dimensions, 50

rotated, 17 time, 12

rotatedaround, 17 top, 31

round, 13, 14 transform, 17

rounded, 15 transform, 10, 17

rt, 31 transformed, 17
true, 9

save, 6, 35

scaled, 17, 22 ulcorner, 19

scaling, 4 ulft, 31

57

UMM, 1

unary operator, 7
undefine, 6

undraw, 29

unfill, 30

uniform random number, 13
uniformdeviate, 13
units, 4
unitsquare, 26, 27
unitvector, 14
unknown, 10

until, 21

up, 14

upto, 21, 33
urcorner, 19

urt, 31

value
colour, 11
decimal, 10
global, 6
group, 6
known, 10
largest, 12
smallest, 12
unknown, 6, 10
vardef, 38
variable
anonymous, 9
declaration, 6
internal, 5, 7
local, 6
name, 5
verbatimtex, 28
version, 2

whatever, 9
white, 11
withcolor, 12, 30, 31
withdots, 22
within, 33
withpen, 16, 31
write

expression, 35

string, 34

to file, 36
write, 36

x, 5, 14, 38

Index

58

xpart, 14, 18
xscaled, 15, 17
xxpart, 18
xypart, 18

y, 5, 14, 38
year, 12
yellowpart, 12
ypart, 14, 18
yscaled, 15, 17
yxpart, 18
yypart, 18

z, 5, 14, 38
zscaled, 17

	Introduction
	Basic Concepts
	Version
	Input format
	The LaTeX File
	Comments
	Units
	Coordinates
	Variables
	Internal Variables
	Declarations
	Scope
	Expressions
	Assignment
	Equations

	Types
	Booleans
	Strings
	Colors
	Numerics
	Pairs
	Pens
	Transforms
	Pictures
	Lists

	Paths
	Straight lines
	Dots and Dashes
	Circles, Disks, and Arcs
	Curves
	Parametric Paths
	Path Constructors

	Commands
	Drawing Commands
	btex and verbatimtex
	clip
	draw
	drawarrow
	fill
	label

	Non-drawing Commands
	drawoptions
	filenametemplate
	for
	if
	message
	readfrom
	save
	show and friends
	write

	Macros
	def macros
	vardef and other macro forms

	Macro Packages
	Boxes
	Creating and Drawing Boxes
	Positioning Boxes
	Oval Boxes

	Graphs
	TEX

	Debugging
	Examples
	Euler Integration
	The Lorentz Transformation
	Dissipation
	Desargues' Theorem
	Three Dimensions
	Reading a File

	Links
	Index

