
The MetaPost SystemJohn D. HobbyJune 28, 1995AbstractThe MetaPost system implements a picture-drawing language verymuch like Knuth's METAFONT except that it outputs PostScript com-mands instead of run-length-encoded bitmaps. MetaPost is a powerfullanguage for producing �gures for documents to be printed on PostScriptprinters. It provides easy access to all the features of PostScript and itincludes facilities for integrating text and graphics.This document describes the system and its implementation. It alsoincludes basic user documentation to be used in conjunction with TheMETAFONTbook. Much of the source code was copied from the META-FONT sources by permission from the author.1 OverviewThe MetaPost system is based on Knuth's METAFONT1 [3] and much of thesource code is copied with permission from the METAFONT sources. MetaPostis a graphics language like METAFONT, but with new primitives for integrat-ing text and graphics and for accessing special features of PostScript2 such asclipping, shading, and dashed lines. The language has the main features ofMETAFONT including �rst-class objects for curves, pictures, a�ne transforma-tions, and pen shapes. Another feature borrowed fromMETAFONT is the abilityto solve linear equations that are given implicitly, thus allowing many programsto be written in a largely declarative style.While MetaPost could be used as a tool for generating PostScript fonts, theintended application is to generate �gures for TEX3 and tro� documents. The�gures can be integrated into a TEX document via a freely available programcalled dvips as shown in Figure 1.4 A similar procedure works with tro�: thedpost output processor includes PostScript �gures when they are requested viatro�'s \X command.1METAFONT is a trademark of Addison Wesley Publishing company.2PostScript is a trademark of Adobe Systems Inc.3TEX is a trademark of the American Mathematical Society.4The C source for dvips comes with the web2c TEX distribution. Similar programs areavailable from other sources. 1

Figures in MetaPost TEX Document???y ???yMetaPost TEX???y ???yFigures in PostScript dvi �le???y ???ydvips???yPostScriptFig. 1: A diagram of the processing for a TEX document with �gures done inMetaPostOther than the new commands for integrating text and accessing featuresof PostScript, the main di�erence between the METAFONT and MetaPost lan-guages is that the latter deals with continuous pictures rather than discreteones. This a�ects the coordinate system and some of the subtler aspects of thelanguage as outlined in the next two sections.Sections 2 and 3 give a short summary of the language with numerous exam-ples. Then Section 4 describes the implementation. A preliminary descriptionof the language has already appeared [1].2 Introduction to MetaPostMetaPost is a lot like Knuth's METAFONT except that it outputs PostScriptprograms instead of bitmaps. Knuth describes the METAFONT language in TheMETAFONTbook. [4]This document introduces MetaPost via examples and references to key partsof The METAFONTbook. It is a good idea to start by reading chapters 2 and 3in The METAFONTbook. The introductory material in these chapters applies toMetaPost except that coordinates are in units of PostScript points by default(72 units per inch).To see MetaPost in action, consider a �le fig.mp containing the followingtext: 2

beginfig(1);a=.7in; b=0.5in;z0=(0,0); z1=(a,0); z2=(0,b);z0=.5[z1,z3]=.5[z2,z4];draw z1..z2..z3..z4..cycle;drawarrow z0..z1;drawarrow z0..z2;label.top(btex a etex, .5[z0,z1]);label.lft(btex b etex, .5[z0,z2]);endfig;endThen the command mp fig produces an output �le fig.1 that can be included ina TEX document. After \input epsf the TEX commands $$\epsfbox{fig.1}$$produce abThe beginfig(1) line means that everything up to the next endfig is to beused to create fig.1. If there were more than one �gure in fig.mp, there wouldbe additional beginfig : : : endfig blocks.The drawarrow macro has been specially developed for MetaPost. Thereis also a command called drawdblarrow that draws the following path witharrowheads on both ends. The line beginning with label.top is a call to astandard macro for positioning text just above a given point. In this case, thepoint .5[z0,z1] is the midpoint of the segment from z0 to z1 and the text isgenerated by the TEX commands a. In addition to label.top and label.lft,there is also label.bot, label.rt, and four other versions label.ulft forupper-left etc. Just plain label without any su�x centers the label on thegiven point.The discussion of pens in Chapter 4 of The METAFONTbook applies toMetaPost as well, but simple �gures often do not need to refer to pens explicitlybecause they can just use the default pen which is a circle 0:5bp in diameter.5This produces lines of uniform thickness 0:5bp regardless of the direction of theline.Chapter 5 of The METAFONTbook does not apply to MetaPost. In partic-ular, there is no mode setup macro or \sharped units" and mp does not outputgf �les. MetaPost does have a set of preloaded macros but they are not the5The letters \bp" stand for \big point" (172 inch). This is one of the standard units ofmeasure in TEX andMETAFONT and it is the default unit for MetaPost. A complete listingof prede�ned units is given on page 92 of The METAFONTbook.3

same as METAFONT's plain base. If there were an analogous chapter aboutrunning MetaPost, it would probably mention that mp skips over btex : : : etexblocks and depends on a preprocessor to translate them into low level MetaPostcommands. If the main �le is fig.mp, the translated TEX material is placed ina �le named fig.mpx. This is normally done silently without any user interven-tion but it could fail if one of the btex : : : etex blocks contains an erroneousTEX command. If this happens, the erroneous TEX input is saved in the �lempxerr.tex and the error messages appear in mpxerr.log.If there is a need for TEX macro de�nitions or any other auxiliary TEX com-mands, they can be enclosed in a verbatimtex : : : etex block. The di�erencebetween btex and verbatimtex is that the former generates a picture expressionwhile the latter does not.On Unix systems, an environment variable can be used to specify that btex: : : etex and verbatimtex : : : etex blocks are in tro� instead of TEX. When us-ing this option, it is a good idea to give the MetaPost command prologues:=1.This tells mp to output structured PostScript and assume that text comes frombuilt-in PostScript fonts.Chapters 6{10 of The METAFONTbook cover important aspects of META-FONT that are almost identical in MetaPost. The only change to the tokeniza-tion process described in Chapter 6 is that TEX material can contain percentsigns and unmatched double quote characters so these are treated like spaceswhen skipping TEX material. The preprocessor gives TEX everything betweenbtex and etex except for leading and trailing spaces.Chapters 7{10 discuss the types of variables and expressions that METAFONTunderstands. MetaPost has an additional type \color" that is a lot like pairexcept that it has three components instead of two. The operations allowedon colors are addition, subtraction, scalar multiplication, and scalar division.MetaPost also understands mediation expressions involving colors since .3[w,b]is equivalent to w+.3(b-w)which is allowed even when w and b are colors. Colorscan be speci�ed in terms of the prede�ned constants black, white, red, green,blue, or the red, green, and blue components can be given explicitly. Black is(0,0,0) and white is (1,1,1). There is no restriction against colors \blackerthan black" or \whiter than white" except all components are snapped back tothe [0; 1] range when a color is given in an output �le. MetaPost solves linearequations involving colors the same way it does so for pairs. (This is explainedin Chapter 9).Let's consider another example that uses some of the ideas discussed above.The MetaPost program 4

beginfig(2);h=2in; w=2.7in;path p[], q[], pp;for i=1.5,2,4: ii:=i**2;p[i] = (w/ii,h){1/ii,-1}...(w/i,h/i)...(w,h/ii){1,-1/ii};endforfor i=.5,1.5: q[i] = origin..(w,i*h) cutafter p1.5; endforpp = buildcycle(q0.5, p2, q1.5, p4);fill pp withcolor .8white;z0=center pp;picture lab; lab=thelabel(btex $f>0$ etex, z0);unfill bbox lab; draw lab;draw q0.5; draw p2; draw q1.5; draw p4;makelabel.top(btex P etex, p2 intersectionpoint q0.5);makelabel.rt(btex Q etex, p2 intersectionpoint q1.5);endfig;produces the following �gure: f > 0 PQThe third line declares arrays of paths p and q as explained in Chapter 7.Note that q1.5 is the same as q[i] when i = 1:5. The for loops make eachp[i] an approximation to an arc of the hyperbolaxy = whi2and each q[i] a segment of slope ih=w. (Loops are discussed in Chapter 19 ofThe METAFONTbook).The cutafter operator is used to cut o� the part of q[i] after the inter-section with p1.5. (There is no \draw p1.5" in the input for the above �gureso this hyperbola is invisible). There is also a cutbefore operator de�ned tomake a cutbefore b5

what's left of path a when everything before its intersection with b is removed.In case of multiple intersections cutbefore and cutafter try to cut o� as littleas possible.The shaded region in the above �gure is due to the linefill pp withcolor .8whiteThe boundary of this region is the path pp that the buildcycle macro createsby piecing together the four paths given as arguments. In other words, pp isconstructed by going along q0.5 until it intersects p2, then going along p2 untilhitting q1.5, etc. It turns out that this requires going backwards along p2and q1.5. The buildcycle macro tries to avoid going backwards if it has achoice as to which intersection points to choose, but in this example each pairof consecutive path arguments has a unique intersection point. It is generallya good idea to avoid multiple intersections because they can lead to unpleasantsurprises.The fill and unfill macros in plain MetaPost are similar to the corre-sponding macros discussed in Chapter 13 of The METAFONTbook but MetaPostassigns colors to regions rather than assigning weights to pixels. There is nocull command or withweight option in MetaPost. The unfill macro usedto erase the rectangle containing the label \f > 0" in the above �gure worksby specifying \withcolor background" where background" is usually equal towhite. The complete syntax for primitive drawing commands in MetaPost isas follows:hpicture commandi ! haddto commandi j hclip commandihaddto commandi !addto hpicture variablei also hpicture expressionihwith listij addto hpicture variablei contour hpath expressionihwith listij addto hpicture variablei doublepath hpath expressionihwith listihwith listi ! hemptyi j hwith clauseihwith listihwith clausei ! withcolor hcolor expressionij withpen hpen expressioni j dashed hpicture expressionihclip commandi ! clip hpicture variablei to hpath expressioniIf P stands for currentpicture, q stands for currentpen, and b stands forbackground, the standard drawing macros have roughly the followingmeanings:draw p means addto P doublepath p withpen qfill c means addto P contour cfilldraw c means addto P contour c withpen qundraw p means addto P doublepath p withpen q withcolor bunfill c means addto P contour c withcolor bunfilldraw c means addto P contour c withpen q withcolor b6

The expressions denoted by c in the table must be cyclic paths, while pathexpressions p need not be cyclic. It is also possible to use draw and undrawwhen the argument is a picture r:draw r means addto P also rundraw r means addto P also r withcolor bThe argument to unfill in the last example is bbox lab. This is a callto a standard macro that gives the bounding box of a picture as a rectangularpath. The center macro used two lines previously makes z0 the center of thebounding box for path pp. (This works for paths and pictures). The expressionthelabel(btex $f>0$ etex, z0)computes a picture containing the text \f > 0" centered on the point z0.Here is the complete syntax for labeling commands:hlabel commandi ! hcommand nameihposition su�xi(hlabel texti; hlabel loci)j labelshposition su�xi(hsu�x listi)hcommand namei ! label j thelabel j makelabelhposition su�xi ! hemptyi j .lft j .rt j .top j .botj .ulft j .urt j .llft j .lrthlabel texti ! hpicture expressioni j hstring expressionihlabel loci ! hpair expressionihsu�x listi ! hsu�xi j hsu�xi; hsu�x listiThe label command adds text to currentpicture near the position hlabel locias determined by the hposition su�xi. An empty su�x centers the label andthe other options o�set it slightly so that it does not overlap the hlabel loci.Using thelabel just creates a picture expression rather than actually addingit to currentpicture. Using makelabel instead of label adds a dot at thelocation being labeled. Finally, the labels command doesmakelabelhposition su�xi(str hsu�xi; zhsu�xi)for each hsu�xi in the hsu�x listi, using the str operator to convert the su�xto a string. Thus labels.top(1,2a) places labels \1" and \2a" just above z1and z2a.The examples given so far have all used hlabel texti of the formbtex hTEX commandsi etex:This gets converted into a picture expression. If the label is simple enough,it can be given directly as a string expression in which case it is typeset indefaultfont at defaultscale times its design size. Normally,defaultfont="cmr10" and defaultscale=1;7

but these can be reset if desired. Using cmtex10 instead of cmr10 would allowthe label to contain spaces and special characters. If there is any doubt aboutwhat the design size is, use the fontsize operator to �nd it as follows:defaultfont:="Times"; defaultscale:=10/fontsize "Times"Notice that a hwith clausei can be \dashed hpicture expressioni." The pic-ture gives a template that tells how the line being drawn is to be dashed. Thereis a standard template called evenly that makes dashes 3bp long separated bygaps of length 3bp. It is possible to scale the template in order to get a �ner orcoarser pattern. Thusdraw z1..z2 dashed evenly scaled 2draws a line with dashes 6bp long with gaps of 6bp.The following MetaPost input illustrates the use of dashed lines:beginfig(3);3.2scf = 2.4in;path fun;# = .1;fun = ((0,-1#)..(1,.5#){right}..(1.9,.2#){right}..{curl .1}(3.2,2#)) scaled scf yscaled(1/#);vardef vertline primary x = (x,-infinity)..(x,infinity) enddef;primarydef f atx x = (f intersectionpoint vertline x) enddef;primarydef f whenx x = xpart(f intersectiontimes vertline x)enddef;z1a = (2.5scf,0);z1 = fun atx x1a;y2a=0; z1-z2a=whatever*direction fun whenx x1 of fun;z2 = fun atx x2a;y3a=0; z2-z3a=whatever*direction fun whenx x2 of fun;draw fun withpen pencircle scaled 1pt;drawarrow (0,0)..(3.2scf,0);label.bot(btex x_1 etex, z1a);draw z1a..z1 dashed evenly;makelabel(nullpicture, z1);draw z1..z2a withpen pencircle scaled .3;label.bot(btex x_2 etex, z2a);draw z2a..z2 dashed evenly;makelabel(nullpicture, z2);draw z2..z3a withpen pencircle scaled .3;label.bot(btex x_3 etex, z3a);endfig;This produces the following �gure: 8

x1x2x3The above �gure uses some of the more advanced properties of paths dis-cussed in Chapter 14 of The METAFONTbook. All of this material appliesto MetaPost as well as METAFONT except for the explanation of \strangepaths" which fortunately cannot occur in MetaPost. The parts most relevantto this �gure are the explanation of \curl" speci�cations and the direction,intersectiontimes, and intersectionpoint operators. In order to ensurethat the path fun makes y a unique function of x, the path is �rst constructedwith the y-coordinates compressed by a factor of ten. The �nal \yscaled(1/#)"restores the original aspect ratio after MetaPost has chosen a cubic spline thatinterpolates the given points.The yscaled operator is an example of a very important class of opera-tors that apply a�ne transformations to pairs, paths, pens, pictures, and othertransforms. The discussion in Chapter 15 is relevant and important. The onlydi�erences are that MetaPost has no currenttransform and there is no restrictionon the type of transformations that can be applied to pictures.3 More Advanced TopicsMetaPost does have pens like those in METAFONT but they aren't very impor-tant to the casual user except occasionally to specify changes in line widths asin the preceding �gure. Anyone reading the description in Chapter 16 of TheMETAFONTbook should beware that there is no such thing as a \future pen" inMetaPost and elliptical pens are never converted into polygons. Furthermore,there is no need for cutoff and cutdraw because the same e�ect can be achievedby setting the internal parameter linecap:=butt.9

beginfig(4);for i=0 upto 2:z[i]=(0,40i); z[i+3]-z[i]=(100,30);endforpickup pencircle scaled 18;def gray = withcolor .8white enddef;draw z0..z3 gray;linecap:=butt; draw z1..z4 gray;linecap:=squared; draw z2..z5 gray;labels.top(0,1,2,3,4,5);endfig; linecap:=rounded; 012 345There is also a linejoin parameter as illustrated below. The default valuesof linecap and linejoin are both rounded.beginfig(5);for i=0 upto 2:z[i]=(0,50i); z[i+3]-z[i]=(60,40);z[i+6]-z[i]=(120,0);endforpickup pencircle scaled 24;def gray = withcolor .8white enddef;draw z0--z3--z6 gray;linejoin:=mitered; draw z1..z4--z7 gray;linejoin:=beveled; draw z2..z5--z8 gray;labels.bot(0,1,2,3,4,5,6,7,8);endfig; linejoin:=rounded; 012 345 678Another way to adjust the behavior of drawing commands is by giving thedeclaration drawoptions(hwith listi)For instance, drawoptions(withcolor blue)gives subsequent drawing commands the default color blue. This can still beoverridden by giving another withcolor clause as indraw p withcolor redThe options apply only to relevant drawing commands:drawoptions(dashed dd)will a�ect draw commands but not �ll commands.10

Chapters 17{20 of The METAFONTbook describe the programming con-structs necessary to customize the language to a particular problem. Thesefeatures work the same way in MetaPost but a few additional comments areneeded. These chapters mention certain macros from plain METAFONT that arenot in the plain macro package for MetaPost. Generally if it sounds as thoughit's for making fonts, MetaPost doesn't have it. Remember that beginfig andendfig play the role of METAFONT's beginchar and endchar. Look in the �leplain.mp in the standard macro area if there is any doubt about what macrosare prede�ned. This �le is also a good source of examples.Chapter 17 explains how the interim statement makes temporary changesto internal quantities. This works the same way in MetaPost except that theexample involving autorounding is inappropriate because MetaPost doesn't havethat particular quantity. Here is a complete list of the internal quantities foundin METAFONT but not MetaPost:autorounding, fillin, granularity, hppp, proofing,smoothing, tracingedges, tracingpens, turningcheck,vppp, xoffset, yoffsetThe following additional quantities are de�ned in plain METAFONT but not inplain MetaPost:pixels per inch, blacker, o correction, displaying,screen rows, screen cols, currentwindowThere are also some internal quantities that are unique to MetaPost. Thelinecap and linejoin parameters have already been mentioned. There is alsoa miterlimit parameter that behaves like the similarly named parameter inPostScript. Another parameter, tracing lost chars suppresses error messagesabout attempts to typeset missing characters. This is probably only relevantwhen using string parameters in the labeling macros since expressions generatedby btex : : : etex blocks are not likely to use missing characters.The prologues parameter was referred to earlier when we recommendedsetting it to one when including MetaPost output in a tro� document. Anypositivie value causes the output �les to be \conforming PostScript" that as-sumes only standard Adobe fonts are used. This makes the output more portablebut on most implementations, it precludes the use of the use of TEX fonts suchas cmr10. Software for sending TEX output to PostScript printers generallydownloads such fonts one character at a time and does not make them availablein included PostScript �gures.Plain MetaPost also has internals bboxmargin, labeloffset and ahangleas well as defaultscale which controls the size of the default label font asexplained above. The bboxmargin parameter is the amount of extra space thatthe bbox operator leaves; labeloffset gives the distance by which labels areo�set from the point being labeled; ahangle is the angle of the pointed ends of11

arrowheads (45� by default). There is also a path ahcirc that controls the sizeof the arrowheads. The statementahcirc := fullcircle scaled dchanges the arrowhead length to d=2.The only relevant new material in The METAFONTbook not mentioned sofar is in Chapters 21{22 and Appendix D. Chapters 23 and 24 do not applyto MetaPost at all. The grammar given in Chapters 25 and 26 isn't exactly agrammar of MetaPost, but most of the di�erences have been mentioned above.There are redpart, bluepart, and greenpart operators for colors and there isno totalweight operator. The new primitive for label text in pictures ishpicture secondaryi ! hpicture secondaryi infont hstring primaryiBounding box information can be obtained via the operatorshpair primaryi ! hcorner selectorihpicture primaryihcorner selectori ! llcorner j urcorner j lrcorner j urcornerThe main reason for having these in the MetaPost language is for measuringtext but they work for pictures containing any mixture of text and graphics.The command special hstring expressioniadds a line of text at the beginning of the next output �le. For instance, thefollowing commands add PostScript de�nitions that allow MetaPost output touse the built-in font Times-Roman.special "/Times-Roman /Times-Roman def";special "/fshow {exch findfont exch scalefont setfont show}";special " bind def";A similar de�nition is generated automatically when you set prologues:=1.With prologues=0, it is assumed that the program that translates TEX outputand includes PostScript �gures will add the necessary de�nition.6Another new feature of MetaPost that needs further explanation is the ideaof a dash pattern. It is easiest if you can just get by with the dash patterncalled evenly that is de�ned in plain MetaPost, but it seems necessary to givethe exact rules just in case they are needed.A dash pattern is a picture containing one or more horizontal line segments.It doesn't matter what pen is used to draw the line segments. MetaPost behavesas though the dash pattern is replicated to form an in�nitely long horizontal6A full description of how to avoid including your output in a TEX document is beyondthe scope of this documentation. MetaPost output generated with prologues:=1 can besent directly to a PostScript printer if it uses only built-in fonts like Helvetica.12

dashed line to be used as a template for dashed lines. For example, the followingcommands create a dash pattern dd:draw (1,0)..(3.0); draw (5,0)..(6,0);picture dd; dd=currentpicture; clearit;Lining up an in�nite number of copies of dd produces a set of line segmentsf (5i; 0) : : :(5i + 3; 0) j for all integer i g:This template is used by starting from the y-axis and going to the right, pro-ducing dashes 3bp long separated by gaps of length 2bp.In this example, successive copies of dd are o�set by 5bp because the rangeof x coordinates covered by the line segments in dd is 6� 1 or 5bp. The o�setcan be increased by shifting the dash pattern vertically so that it lies at a y-coordinate greater that 5bp in absolute value. The rule is that the horizontalo�set between copies of the dash pattern is the maximum of jyj and the rangeof x-coordinates. Making BoxesThere are auxiliary macros not included in plain MetaPost that make itconvenient to do things that pic is good at. What follows is a description of howto use the macros contained in the �le boxes.mp. This may be of some interestto users who don't need these macros but want to see additional examples ofwhat can be done in MetaPost.The main idea is that one should sayboxithsu�xi(hpicture expressioni)in order to create pair variables hsu�xi.c, hsu�xi.n, hsu�xi.e, etc. Thesecan then be used for positioning the picture before drawing it with a separatecommand such as drawboxed(hsu�xi)The command boxit.bb(pic) makes bb.c the position where the center ofpicture pic is to be placed and de�nes bb.sw, bb.se, bb.ne, and bb.nw tobe the corners of a rectangular path that will surround the resulting picture.Variables bb.dx and bb.dy give the spacing between the shifted version of picand the surrounding rectangle and bb.off is the amount by which pic has tobe shifted to achieve all this.The boxit macro gives linear equations that force bb.sw, bb.se, : : : to bethe corners of a rectangle aligned on the x and y axes with the picture piccentered inside. The values of bb.dx, bb.dy, and bb.c are left unspeci�ed sothat the user can give equations for positioning the boxes. If no such equationsare given, macros such as drawbox can detect this and give default values.13

ncs neesenwwsw dydy dxdx

14

The following example shows how this works in practice.input boxesbeginfig(7); boxjoin(a.se=b.sw; a.ne=b.nw);boxit.a(btex \cdots etex); boxit.ni(btex n_i etex);boxit.di(btex d_i etex); boxit.nii(btex n_{i+1} etex);boxit.dii(btex d_{i+1} etex); boxit.aa(pic_.a);boxit.nk(btex n_k etex); boxit.dk(btex d_k etex);di.dy = 2;drawboxed(a,ni,di,nii,dii,aa,nk,dk); label.lft("ndtable:", a.w);boxjoin(a.sw=b.nw; a.se=b.ne);interim defaultdy:=7;boxit.ba(); boxit.bb(); boxit.bc();boxit.bd(btex \vdots etex); boxit.be(); boxit.bf();bd.dx=8; ba.ne=a.sw-(15,10);drawboxed(ba,bb,bc,bd,be,bf); label.lft("hashtab:",ba.w);def ndblock suffix $ =boxjoin(a.sw=b.nw; a.se=b.ne);forsuffixes $$=$a,$b,$c: boxit$$(); ($$dx,$$dy)=(5.5,4);endfor; enddef;ndblock nda; ndblock ndb; ndblock ndc;nda.a.c-bb.c = ndb.a.c-nda.c.c = (whatever,0);xpart ndb.c.se = xpart ndc.a.ne = xpart di.c;ndc.a.c - be.c = (whatever,0);drawboxes(nda.a,nda.b,nda.c,ndb.a,ndb.b,ndb.c,ndc.a,ndc.b,ndc.c);drawarrow bb.c .. nda.a.w;drawarrow be.c .. ndc.a.w;drawarrow nda.c.c .. ndb.a.w;drawarrow nda.a.c{right}..{curl0}ni.c cutafter bpath ni;drawarrow nda.b.c{right}..{curl0}di.c cutafter bpath di;drawarrow ndc.a.c{right}..{curl0}nii.c cutafter bpath nii;drawarrow ndc.b.c{right}..{curl0}dii.c cutafter bpath dii;drawarrow ndb.a.c{right}..nk.c cutafter bpath nk;drawarrow ndb.b.c{right}..dk.c cutafter bpath dk;x.ptr=xpart aa.c; y.ptr=ypart ndc.a.ne;drawarrow subpath (0,.7) of (z.ptr..{left}ndc.c.c);label.rt(btex ndblock etex, z.ptr); endfig;It is instructive to compare the MetaPost output below with the similar �gurein the pic manual [2]. 15

� � � ni di ni+1 di+1 � � � nk dkndtable:...hashtab: ndblockThe second line of input for the above �gure containsboxjoin(a.se=b.sw; a.ne=b.nw)This causes boxes to line up horizontally by giving additional equations that areinvoked each time some box a is followed by some other box b. These equationsare �rst invoked on the next line when box a is followed by box ni. This yieldsa.se=ni.sw; a.ne=ni.nwThe next pair of boxes is box ni and box di. This time the implicitly generatedequations are ni.se=di.sw; ni.ne=di.nwThis process continues until a new boxjoin is given. In this case the newdeclaration is boxjoin(a.sw=b.nw; a.se=b.ne)which causes boxes to be stacked below each other.After calling boxit for the �rst eight boxes a through dk, the example givesthe single equation di.dy = 2 followed by a call to drawboxed that draws theeight boxes with the given text inside of them. The equation forces there tobe 2bp of space above and below the contents of box di (the label \di"). Sincethis doesn't fully specify the sizes and positions of the boxes, the drawboxedmacro starts by selecting default values, setting a.dx through dk.dx equal tothe default value of 3bp.The argument to boxit can be omitted as in boxit.ba() or boxit.bb().This is like calling boxit with an empty picture. Alternatively the argumentcan be a string expression instead of a picture expression in which case thestring is typeset in the default font.In addition to the corner points a.sw, a.se, : : :, a command like boxit.ade�nes points a.w, a.s, a.e and a.n at the midpoints of the outer rectangle.If this bounding rectangle is needed for something other than just being drawnby the drawboxed macro, it can be referred to as bpath.a or in generalbpathhbox namei16

The bpath macro is used in the arguments to drawarrow in the previousexample. For instance nda.a.c{right}..{curl0}ni.cis a path from the center of box nda.a to the center of box ni. Following thiswith \cutafter bpath.ni" makes the arrow go towards the center of the boxbut stop when it hits the outer rectangle.The next example also uses this technique of cutting connecting arrows whenthey hit a bounding path, but in this case the bounding paths are circles andovals instead of rectangles. The circles and ovals are created by using circleitin place of boxit. Saying circleit.a(pic) de�nes points a.c, a.s, a.e, a.n,a.w and distances a.dx and a.dy. These variables describe how the picture iscentered in an oval as can be seen from the following diagram:ncs ew dydy dxdx

17

Here is the input for the �gure that uses circleit:beginfig(9);vardef cuta(suffix a,b) expr p =drawarrow p cutbefore bpath.a cutafter bpath.b;point .5*length p of penddef;vardef self@# expr p =cuta(@#,@#) @#.c{curl0}..@#.c+p..{curl0}@#.c enddef;verbatimtex\def\stk#1#2{$\displaystyle{\matrix{#1\cr#2\cr}}$} etexcircleit.aa("Start"); aa.dx=aa.dy;circleit.bb(btex \stk B{(a|b)^*a} etex);circleit.cc(btex \stk C{b^*} etex);circleit.dd(btex \stk D{(a|b)^*ab} etex);circleit.ee("Stop"); ee.dx=ee.dy;numeric hsep;bb.c-aa.c = dd.c-bb.c = ee.c-dd.c = (hsep,0);cc.c-bb.c = (0,.8hsep);xpart(ee.e - aa.w) = 3.8in;drawboxed(aa,bb,cc,dd,ee);label.ulft(btexbetex, cuta(aa,cc) aa.c{dir50}..cc.c);label.top(btexbetex, self.cc(0,30pt));label.rt(btexaetex, cuta(cc,bb) cc.c..bb.c);label.top(btexaetex, cuta(aa,bb) aa.c..bb.c);label.llft(btexaetex, self.bb(-20pt,-35pt));label.top(btexbetex, cuta(bb,dd) bb.c..dd.c);label.top(btexbetex, cuta(dd,ee) dd.c..ee.c);label.lrt(btexaetex, cuta(dd,bb) dd.c..{dir140}bb.c);label.bot(btexaetex,cuta(ee,bb) ee.c..tension1.3 ..{dir115}bb.c);label.urt(btexbetex,cuta(ee,cc) ee.c{(cc.c-ee.c)rotated-15}..cc.c);endfig;The \boxes" produced when using circleit come out circular unless somethingforces a di�erent aspect ratio.
18

Start B(ajb)�aCb� D(ajb)�ab Stopb baa a b ba a bIn the above �gure, the equations aa.dx=aa.dy and ee.dx=ee.dy aftercircleit.aa("Start") and circleit.ee("Stop")make the start and stop nodes non-circular.The general rule is that bpath.c comes out circular if c.dx, c.dy, and c.dx�c.dy are all unspeci�ed. Otherwise the macros select an oval just big enoughto contain the given picture. (The margin of safety is given by the internalparameter circmargin).There is also a pic macro that makes pic.c the picture that goes insidebpath.c In addition to the drawboxed macro that draws the picture and thesurrounding rectangle or oval, there are drawunboxed and drawboxes macrosthat draw the pictures and the surrounding paths separately.4 ImplementationThe MetaPost interpreter is written in Knuth's WEB language which can bethought of as PASCAL with macros. This choice allows the sharing of codewith the METAFONT interpreter. [4] Indeed, about three fourths of the code inthe main source �le mp.web is copied from this source by permission from theauthor.In accordance with the standard methodology for WEB programs, parts of theprogram that are speci�c to the UNIX7 system are given in a separate �le mp.chthat the tangle processor merges with mp.web to form a PASCAL program. (Itis then automatically translated into C using a special-purpose translator thatis included with the UNIX version of TEX.) The only other code required bythe MetaPost interpreter is a short external C program mpext.c and a smallinclude �le mp.h to tie it all together.7UNIX is a registered trademark of UNIX System Laboratories.19

In addition to the main interpreter, there are some programs that controlthe translation of typesetting commands in btex : : : etex blocks. When theinterpreter encounters btex in some input �le foo.mp, it needs to start readingfrom an auxiliary �le foo.mpx. This �le should contain translations of the btex: : : etex blocks in foo.mp into low-level MetaPost commands. If foo.mpx is outof date or does not exist, the MetaPost interpreter invokes a shell script thatgenerates the �le.The generation of an auxiliary �le foo.mpx from an input �le foo.mp is athree step process: a C program called mptotex strips out the TEX commands;then TEX produces a binary �le that gives low-level typesetting instructions; and�nally, a WEB program dvitomp writes equivalent MetaPost commands in thefoo.mpx �le. When using tro�, C programs mptotr and dmp replace mptotexand dvitomp.References[1] J. D. Hobby. A METAFONT-like system with PostScript output. Tugboat,the TEX User's Group Newsletter, 10(4):505{512, December 1989.[2] Brian W. Kernighan. Pic|a graphics language for typesetting. In Unix Re-search System Papers, Tenth Edition, pages 53{77. AT&T Bell Laboratories,1990.[3] D. E. Knuth. Computers and Typesetting, volume C. Addison Wesley,Reading, Massachusetts, 1986.[4] D. E. Knuth. Computers and Typesetting, volume D. Addison Wesley,Reading, Massachusetts, 1986.
20

