Online \texttt{\LaTeX} editors and other resources

Paweł Łupkowski • Adam Mickiewicz University, Poznań • pawel.lupkowski@gmail.com
How online editors and resources change the way we work with \LaTeX?
WRITELATEX & SHAR Latex
• an editor (with syntax highlighting, line numbering and live preview),
• an online \textit{\LaTeX} compiler,
• files storage,
• documents’ templates,
• sharing and collaboration options.
<table>
<thead>
<tr>
<th>Feature</th>
<th>writeLaTeX</th>
<th>ShareLaTeX</th>
</tr>
</thead>
<tbody>
<tr>
<td>storage quota</td>
<td>100MB</td>
<td>no</td>
</tr>
<tr>
<td>tag projects</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Dropbox</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>compilers</td>
<td>pdfLaTeX, LaTeX, XeLaTeX, LuaLaTeX</td>
<td>pdfLaTeX, LaTeX, XeLaTeX, LuaLaTeX</td>
</tr>
<tr>
<td>templates</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>*.zip project upload</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>file history</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>limits for no of projects</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>mobile devices</td>
<td>yes</td>
<td>poor</td>
</tr>
<tr>
<td>edition without registra</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>collaboration</td>
<td>no limits</td>
<td>with 1 user only</td>
</tr>
</tbody>
</table>
WRITE LATEX
Don't question Evolution!!

Just

The cell requires over 1,000 processes to stay alive - if one is gone - all 1,000+ must evolve at once - one octave.

Darwin's evolutionary theory is the only theory backed with scientific data. Evolution can be seen on micro- and macro level.

Wonderful exhibit - sense, touch, and object.

Imagine your baronet, cutlery, and the fresh taste.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wniosek o upoważnienie adiunktów do prowadzenia seminariów magisterskich na k...</td>
<td>1006667nxdztzk</td>
<td>2 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartdiagram -- paczkomat.wordpress.com</td>
<td>992939rbpzyf</td>
<td>6 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venndiagram -- paczkomat.wordpress.com</td>
<td>998037wpxcm</td>
<td>3 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ePub Template</td>
<td>993087cqjvvs</td>
<td>6 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylabus</td>
<td>947582khvjxj</td>
<td>6 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online \LaTeX\ [bachotex]</td>
<td>947559hdmwn</td>
<td>19 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative question-responses and question dependency [logica]</td>
<td>185094stbsmg</td>
<td>19 days ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How to teach \LaTeX? Cognitive science curriculum case study [bachotex]</td>
<td>139264pfvkxt</td>
<td>12 months ago by Paweł Lupkowski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Just Don't Question Evolution!!

Darwin's evolutionary theory is the only theory backed with sound scientific data. Evolution can be seen on micro- and macro level.

Wonderful exhibit

I respect the theory

editor

proof of God's power.
Matt Larson
B&W, Class of 2010

Sorry, but the Cambrian Explosion basically kills the theory. Not to mention the fossil record, or the lack of feasibility of practical evolution even in single-cell organisms. The odds are so astronomically against the classic Theory producing any coherent organisms are trillions to one.

This is

Imagine a banana and a fork beside the fresh tastiest

This is a non

just one life at 1,000 years must evolve at our time scale.
In this paper I will present my experience in teaching LaTeX in an introductory Information Technology course. The students are mostly non-mathematics majors, and the course is designed to be accessible to students with a variety of backgrounds. The course is structured to be self-contained, with each section building on the previous one. The students are given a variety of assignments, ranging from simple formatting exercises to more complex projects. The assignments are designed to help students develop a deeper understanding of the underlying principles of LaTeX, as well as to give them the opportunity to apply what they have learned in a practical context.

The course begins with an introduction to the basic commands of LaTeX, including how to write and compile a document. The students are then introduced to more advanced features, such as the use of packages and the creation of tables and figures. The course concludes with a project in which the students must write a full-length report using LaTeX, incorporating all the skills they have learned in the course.

Overall, the course is designed to be engaging and challenging, with a focus on helping students develop a strong foundation in LaTeX. The students are encouraged to ask questions and to seek help when they need it, and the course is designed to be flexible enough to accommodate different learning styles.

The course has been well received by students, with many of them expressing a desire to continue using LaTeX in their future studies. The course has also been praised by faculty members, who have noted its potential for use in other courses as well.
Project Settings
(Apply to the current project only)

Project Title in My Projects
☑ Set Automatically from \title Command

Spell Check
☑ Enable

Spell Check Language:
English (United States)

Spell check is available on our Personal+ plan and up.

Show Advanced Build Options

SAVE PROJECT SETTINGS

My Settings
(Apply to all your projects)

Editor Mode (Key Map)

☑ Emacs

☑ Auto-Close Brackets

☑ Auto-Complete Commands

Available on our Personal+ plan and up.

Editor Theme
Default

Available on our Personal+ plan and up.

Default Spell Check Language (for new projects)

English (United States)

Available on our Personal+ plan and up.

SAVE MY SETTINGS
The \LaTeX\ Course Outline

The \LaTeX\ part of the Information Technology module usually takes 3 classes for the issues connected with preparing an article, one class for the multimedia presentation, and one class for the final assignment (the project).

The first class involves the following issue (or topics):...
The Module Contents

The Information Technology module is obligatory for the first year students of cognitive science. Until the last year it was offered in the second semester, from now on it is taught in the first semester. The aim of the module is to introduce information technology tools necessary to prepare documents mainly for academic purposes. The module syllabus covers text processing as well as preparing and editing raster and vector graphics. The criterion of choice for the software used in the module is wide availability for students (free licences, no payments, versions offered for different operating systems).

During the module (15 classes, 2 hours each) students are getting familiar with the following programs: Open Office Writer, LaTeX, Open Office Impress, Beamer, Open Office Draw, Inkscape, GIMP and Scribus.

The module assessment is based on three projects (text processing with Writer, text processing with \LaTeX, and graphics) and ten assignments (in the form of short practical tests and homework).

As for the text processing part of the module, students are presented with two approaches WYSIWYG (Writer) and WYSIWYM (LaTeX). The idea is to give them an opportunity to compare and evaluate these options. Both, Writer and \LaTeX parts of the module have similar structure. First students learn how to format text (text alignment, page settings, non-breakable spaces, en-dash vs em-dash etc.). Then more advanced features, which are necessary in the academic context, are introduced. Students learn how to typeset mathematical formulae, build tables with proper captions, how to insert an image and add a caption, how to add footnotes. Afterwards they learn about logical document structure (sections, subsections), managing bibliography, generating table of contents, list of figures, list of tables and alphabetical index.

The Information Technology module is obligatory for the first year students of cognitive science. Until the last year it was offered in the second semester, from now on it is taught in the first semester. The aim of the module is to introduce information technology tools necessary to prepare documents mainly for academic purposes. The module syllabus covers text processing as well as preparing and editing raster and vector graphics. The criterion of choice for the software used in the module is wide availability for students (free licences, no payments, versions offered for different operating systems). During the module (15 classes, 2 hours each) students are getting familiar with the following programs: Open Office Writer, \LaTeX, Open Office Impress, Beamer, Open Office Draw, Inkscape, GIMP and Scribus.

The module assessment is based on three projects (text processing with Writer, text processing with \LaTeX, and graphics) and ten assignments (in the form of short practical tests and homework). As for the text processing part of the module, students are presented with two approaches WYSIWYG (Writer) and WYSIWYM (\LaTeX). The idea is to give them an opportunity to compare and evaluate these options. Both, Writer and \LaTeX parts of the module have similar structure. First students learn how to format text (text alignment, page settings, non-breakable spaces, en-dash vs em-dash etc.). Then more advanced features, which are necessary in the academic context, are introduced. Students learn how to typeset mathematical formulae, build tables with proper captions, how to insert an image and add a caption, how to add footnotes. Afterwards they learn about logical document structure (sections, subsections), managing bibliography, generating table of contents, list of figures, list of tables and alphabetical index.

\section{The Module Contents}

The Information Technology module is obligatory for the first year students of cognitive science. Until the last year it was offered in the second semester, from now on it is taught in the first semester. The aim of the module is to introduce information technology tools necessary to prepare documents mainly for academic purposes. The module syllabus covers text processing as well as preparing and editing raster and vector graphics. The criterion of choice for the software used in the module is wide availability for students (free licences, no payments, versions offered for different operating systems). During the module (15 classes, 2 hours each) students are getting familiar with the following programs: Open Office Writer, \LaTeX, Open Office Impress, Beamer, Open Office Draw, Inkscape, GIMP and Scribus.

The module assessment is based on three projects (text processing with Writer, text processing with \LaTeX, and graphics) and ten assignments (in the form of short practical tests and homework). As for the text processing part of the module, students are presented with two approaches WYSIWYG (Writer) and WYSIWYM (\LaTeX). The idea is to give them an opportunity to compare and evaluate these options. Both, Writer and \LaTeX parts of the module have similar structure. First students learn how to format text (text alignment, page settings, non-breakable spaces, en-dash vs em-dash etc.). Then more advanced features, which are necessary in the academic context, are introduced. Students learn how to typeset mathematical formulae, build tables with proper captions, how to insert an image and add a caption, how to add footnotes. Afterwards they learn about logical document structure (sections, subsections), managing bibliography, generating table of contents, list of figures, list of tables and alphabetical index.
\documentclass[10pt,one-column]{ltugboat}
\usepackage{graphicx}
\usepackage{ifpdf}
\usepackage{breaklinks, colorlinks, linkcolor=black, citecolor=black, urlcolor=black, hyperref}
\else
\usepackage[url]
\fi

%%% Start of metadata %%%
\title{How to teach LaTeX Cognitive science curriculum case study}
\author{Paweł Łupkowski}
\address{Institute of Psychology \par Department of Logic and Cognitive Science\par Adam Mickiewicz University \par Poznań, Poland}
\personalURL{http://amu.edu.pl/~p_lup/}

%%% End of metadata %%%
The module assessment is based on three projects (text processing with Writer, text processing with \LaTeX\, and graphics) and ten assignments (in the form of short practical tests and homework).

As for the text processing part of the module, students are presented with two approaches WYSIWYG (Writer) and WYSIWYM (\LaTeX\). The idea is to give them an opportunity to compare and evaluate these options. Both, Writer and \LaTeX\, parts of the module have similar structure. First students learn how to format text (text alignment, page settings, non-breakable spaces, en-dash vs em-dash etc.). Then more advanced features, which are necessary in the academic context, are introduced. Students learn how to typeset mathematical formulae, build tables with proper captions, how to insert an image and add a caption, how to add...
Just Don't Question Evolution!!

The cell requires over 1,000 processes to stay alive - if one is lost, all 1,000+ must evolve at once.

Darwin's evolutionary theory is the only theory backed with sound scientific data. Evolution can be seen on micro- and macro level.

COLLABORATION
How to teach science content course

\begin{abstract}
In this paper I will present the introductory Information Technology module and the ideas for the module and the ideas for the subjects in the cognitive science curriculum.

\end{abstract}

\begin{Introduction}
New sentence. Oy o ik
This paper I want to share one of the elements of Information Technology module. The module is a part of the cognitive science curriculum at the Institute of Psychology. (Adam Mickiewicz University in Poznań) For IP AMU cognitive science curriculum see \url{http://kognitywistyska.amu.edu.pl/en/?page_id=10}. In my opinion embedding LaTeX in this course brings many benefits for the cognitive science students. As E.-Wessier \cite{wessier2013} points out, learning LaTeX is not only learning how to

Read & Edit Link:
https://www.writelatex.com/139264pfvictx
Share this link with your co-authors. They can edit at the same time.

Read Only Link:
https://www.writelatex.com/read/slwkwwqppxdk
Share this link with anyone. They can read, but they can't edit.

Or you can publish to the writeLaTeX Gallery to have your project featured on our site.

Make this a protected project (requires Pro)
Quick and easy publishing for articles, reports and LaTeX templates and examples, right here on writeLaTeX.

Submit to writeLaTeX Gallery

The first open science journal for life scientists.

Submit to F1000Research

Free lecture notes, handouts and study guides for undergraduate mathematics and physics.

Submit to Flooved

Get credit for all your research — free repository that makes all your research citable, shareable and discoverable. (7)

Share PDF on figshare

PeerJ is an Open Access publisher of scholarly articles, serving the Biological and Medical sciences.

Submit to PeerJ or PeerJ Preprints
Oldstyle --
paczkomat.wordpress.com

Author: paczkomat - pakiety systemu LaTeX
License: Creative Commons CC BY 4.0

- write documents with other authors (like in gDocs)
 - rich-text-mode and open access for non-registered users make things easier
- share fillable documents
 - assignments for students, forms, etc.
- share your \LaTeX\ solutions (publish templates, examples)
 - easy access, anyone can try it, no need for local packages installation
VerbTEX

- available for all popular mobile platforms, like: Android, iOS, and Windows8
- writing and editing on your device, internet is necessary for compilation
- the editor offers syntax highlighting and line numbering
- pdfLaTeX compiler
- article template available
• **TEXPortal**
 • available for Android (min. 2.2.)
 • writing, editing **and compilation** on your device
 • pdftex, xetex and luatex compilers available
 • Installation file is 2.1 MB, but full installation is 40 MB
THANK YOU
SOURCES

flickr/lovelornpoets

flickr/apsmuseum

Fonts: latofonts.com