MFLua

EuroBachoTgX meeting 2011 - Bachotek 1/32

Intro

e MFLua is a new implementation of
METAFONT which embeds a Lua
Interpreter

e it's completely compatible with
METAFONT: a METAFONT source can be
used with MFLua without any
modification

e a MFLua source can be used with

METAFONT without any modification
EuroBachoTgX meeting 2011 - Bachotek 2/32

So

Intro

...where is the news ?

METAFONT uses cubic Bézier curve

METAFONT has a bitmap model for a
glyph (the edges structure)

Lua is used to collect and manage
iInformations of curves and pixel:

we can compute the outlines of a glyph
without using a tracing program
(Potrace, Autotrace)

EuroBachoTgX meeting 2011 - Bachotek 3/32

Lua sensors
e Embedding a Lua interpreter in

METAFONT is not a new idea: LuaTgX did
the same

e LuaTgX uses callbacks, MFLua uses
sensors

e A sensor cannot modify the state: it is
read-only

e basically, it's equivalent to

postprocessing the log
EuroBachoTgX meeting 2011 - Bachotek 4/32

Lua sensors

e A quick way to place a sensor is modify
mf.web by adding the procedure and/or
the function needed, and eventually
register it in texmf.defines

e write the relative C function in mflua.h
and mflua.c

e eventually implement the sensor in Lua

EuroBachoTgX meeting 2011 - Bachotek 5/32

@ begin @!{|start_here]|} Lua sensors

mflua_begin_program;

initialize; {set global variables to their starting
values}

feady_already:=314159;
mfluaPRE_start_of_MF;
start_of_MF: @<Initialize the output routines@>;

mflua_initialize;

if start_sym>0 then {insert the ‘\&{everyjob}’ symbol}
begin cur_sym:=start_sym; back_input;
end;

mfluaPRE_main_control;

main_control; {come to life}

mfluaPOST_main_control;

final_cleanup; {prepare for death}

mfluaPOST_final_cleanup;

end_of_MF: close_files_and_terminate;

final_end: ready_already:=0;

end.

EuroBachoTgX meeting 2011 - Bachotek 6/32

. Lua sensors
Example: mflua_begin_program

In mflua. h:

extern int mfluabeginprogram();

In mflua.c:
lua_State *Luas[];

int mfluabeginprogram()

{
lua_State *L = lualL_newstate();

lualL_openlibs(L);

Luas[@] = L;
/* execute Lua external "begin_program.lua” x/
const charx file = "begin_program.lua”;

int res = lualL_loadfile(L, file);
if (res==0) {
res = lua_pcall(L, 0, @, 0);
3
priv_lua_reporterrors(L, res);
return 0;

}
EuroBachoTgX meeting 2011 - Bachotek 7/32

Lua sensors

The script

begin_program. lua

IS quite simple, just the “greetings”
message

print(”--- mflua_begin_program says: ’Hello world!’ ---")

but usually the functions are more
complexes, as in
PRE_fill_envelope_rhs(rhs)

EuroBachoTgX meeting 2011 - Bachotek 8/32

Lua sensors

function PRE_fill_envelope_rhs(rhs)
print("PRE_fill_envelope_rhs")
local knots ,knots_list
local index,char
local chartable = mflua.chartable
knots = _print_spec(rhs)
index = (@+print_int(LUAGLOBALGET _char_code()))
+(@+print_int (LUAGLOBALGET _char_ext()))*256
char = chartable[index] or {}
knots_list = char[’knots’] or {}
knots_list[#knots_list+1] = knots
char[’knots’] = knots_list
chartable[index] = char
return 0
end

(it stores the knots of an envelope)

EuroBachoTgX meeting 2011 - Bachotek 9/32

Lua sensors

Within a sensor we may need to read the
state of METAFONT or executes some
METAFONT procedures or functions. Of
course we must be careful not to change the
data.

EuroBachoTgX meeting 2011 - Bachotek 10/32

Lua sensors

e |t's possible to use WEB2C to export a
PascalWEB symbol (macro, procedure,
function, variable etc.) to Lua: for
example the “WEB2C"” code for info field

/* @d info(#) == mem[#].hh.1lh %/
/*{the |info| field of a memory word} */
static int priv_mfweb_info(lua_State *L)
{
halfword p,q;
p = (halfword) lua_tonumber(L,1);
g = mem [p].hhfield.v.LH ;
lua_pushnumber(L,q);
return 1;

}

EuroBachoTgX meeting 2011 - Bachotek 11/32

Lua sensors

becomes available to Lua as info after
Initialisation:

int mfluainitialize()

{
lua_State *L = Luas[0];
/* register lua functions */

iua_pushcfunction(L, priv_mfweb_info);
lua_setglobal (L, "info");

return 0;

EuroBachoTgX meeting 2011 - Bachotek 12/32

Lua sensors

e |t's also possible to translate a PascalWEB
procedure directly to Lua because they
are not so different. This is easy only if
the procedure or function involves
primitive types (integers and strings).

e the goal is minimize the numbers of
sensors, not to misure every part of
METAFONT

EuroBachoTgX meeting 2011 - Bachotek 13/32

Collecting data

To properly draw the outline of a glyph we

need the following information:

e the edge structures, i.e. the pixels of the
picture

e the paths from the filling of a contour

e the paths from the drawing of an
envelope with a pen

e the pen used in drawing an envelope.

EuroBachoTgX meeting 2011 - Bachotek 14/32

Collecting data

envelopes

contour

~—— 0 0 —

EuroBachoTgX meeting 2011 - Bachotek 15/32

Collecting data

The place where to put a sensor is given
Initially by trial and error. It’s mandatory to
have the METAFONT: The program and the
METAFONTbook at hands, but after a while
the number of the sensor has stabilised at
around twenty sensors (more or less).

EuroBachoTgX meeting 2011 - Bachotek 16/32

Collecting data

e For each character the sensors collect
the data and fill the char[’edges’],
char[’contour’] and char[’envelope’]

tables

e the sensor mflua_end_program (that is
just before the end of METAFONT)
processes the tables and store the result
into envelope.tex as METAPOST paths

EuroBachoTgX meeting 2011 - Bachotek 17/32

Collecting data
When METAFONT ends we have these data

(edges omitted):

/ / k

EuroBachoTgX meeting 2011 - Bachotek 18/32

OQutlines

To remove all the unnecessary paths we
follow 3 steps:

e Preparation
e Compute the intersections

e Remove unwanted paths

EuroBachoTgX meeting 2011 - Bachotek 19/32

. Preparation
Preparation: for each curve we check, with

the de Casteljau algorithm, if a point is
internal or not.

pixels
\

] \
i /

£
/ﬂ \ /?;
\points

It's easy to implement, but a Bézier curve is

not linear (maybe implicitization ?)
EuroBachoTgX meeting 2011 - Bachotek 20/32

Preparation
We then remove all the subpath made with

internal points only — always with
de Casteljau algorithm.

EuroBachoTgX meeting 2011 - Bachotek 21/32

Intersections

We calculate the intersections with a trick.

For each pair of paths p; and po
end_program() appends a METAFONT
snippet to intersect.mf and then executes
MFLua on it; the log intersect.log is then
parsed to extract the intersections.

EuroBachoTgX meeting 2011 - Bachotek 22/32

Intersections

This is a typical METAFONT snippet:

batchmode;
message "BEGIN i=2,3j=1";
path p[l;
p1:=(133.22758,62) ..
controls (133.22758,62.6250003125)
and (133.22758,63.250000800781) ..
(133.22758,63.875001431885);
pP2:=(28.40971260273,62) ..
controls (63.349007932129,62)
and (98.28829,62) ..
(133.22758,62);
numeric t,u; (t,u) = pl1 intersectiontimes p2;
show t,u;

nn

message :

EuroBachoTgX meeting 2011 - Bachotek 23/32

Intersections
and this is a fragment of intersec. log:

This 1s METAFONT, Version 2.718281
(Web2C 7.5.7) (base=mf 2011.1.16)
10 APR 2011 08:35

**intersec.mf

(intersec.mf

BEGIN i=2, j=1

>> 0

>> 1

It's simple and fast — fast enough that is
not necessary to reimplement the
Intersection algorithm in Lua

EuroBachoTgX meeting 2011 - Bachotek 24/32

Remove paths

The last step is the more euristic one. The
strateqgy is to gradually clean up the outlines
by identifying a pattern and implementing a
filter for it with a Lua function.

-- remove 1isolate paths

valid_curves, matrix_inters =
_remove_isolate_path(valid_curves,
matrix_inters)

-- remove duplicate paths

valid_curves, matrix_inters =
_remove_duplicate_path_I(valid_curves,
matrix_inters)

EuroBachoTgX meeting 2011 - Bachotek 25/32

Remove paths

There are about twenty rules: some are
very specific for a char, and maybe some
are partially redundant. These rules are

(almost) valid for the lower case letter of
Concrete Roman 5 point.

EuroBachoTgX meeting 2011 - Bachotek 26/32

Remove paths

N

EuroBachoTgX meeting 2011 - Bachotek 27/32

Remove paths

(>

EuroBachoTgX meeting 2011 - Bachotek 28/32

Remove paths

O
-

EuroBachoTgX meeting 2011 - Bachotek 29/32

Conclusions

MFLua is still a proof-of-concept: there are
too much details to check and fix before to
start to consider as a tool to produce
vectorial fonts. For example, it should be
built at least for MicroSoft Windows; the
sensors should be located on a change file
mflua.ch and not in mf.web; the rules should
be general as much as possible.

EuroBachoTgX meeting 2011 - Bachotek 30/32

Conclusions

But the choice of external Lua files is not
bad: if it is too much difficult to find a
general algorithm at least they can be used
as auxiliaries files for a specific METAFONT

source.

MFLua is at
https://github.com/luigiScarso/mflua

EuroBachoTgX meeting 2011 - Bachotek 31/32

That's all

Thank you !

EuroBachoTgX meeting 2011 - Bachotek 32/32

