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Intro

e MFLua is a new implementation of
METAFONT which embeds a Lua
Interpreter

e it's completely compatible with
METAFONT: a METAFONT source can be
used with MFLua without any
modification

e a MFLua source can be used with

METAFONT without any modification
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So

Intro

...where is the news ?

METAFONT uses cubic Bézier curve

METAFONT has a bitmap model for a
glyph (the edges structure)

Lua is used to collect and manage
iInformations of curves and pixel:

we can compute the outlines of a glyph
without using a tracing program
(Potrace, Autotrace)
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Lua sensors
e Embedding a Lua interpreter in

METAFONT is not a new idea: LuaTgX did
the same

e LuaTgX uses callbacks, MFLua uses
sensors

e A sensor cannot modify the state: it is
read-only

e basically, it's equivalent to

postprocessing the log
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Lua sensors

e A quick way to place a sensor is modify
mf.web by adding the procedure and/or
the function needed, and eventually
register it in texmf.defines

e write the relative C function in mflua.h
and mflua.c

e eventually implement the sensor in Lua
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@ begin @!{|start_here]|} Lua sensors

mflua_begin_program;

initialize; {set global variables to their starting
values}

feady_already:=314159;
mfluaPRE_start_of_MF;
start_of_MF: @<Initialize the output routines@>;

mflua_initialize;

if start_sym>0 then {insert the ‘\&{everyjob}’ symbol}
begin cur_sym:=start_sym; back_input;
end;

mfluaPRE_main_control;

main_control; {come to life}

mfluaPOST_main_control;

final_cleanup; {prepare for death}

mfluaPOST_final_cleanup;

end_of_MF: close_files_and_terminate;

final_end: ready_already:=0;

end.
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. Lua sensors
Example: mflua_begin_program

In mflua. h:

extern int mfluabeginprogram();

In mflua.c:
lua_State *Luas[];

int mfluabeginprogram()

{
lua_State *L = lualL_newstate();

lualL_openlibs(L);

Luas[@] = L;
/* execute Lua external "begin_program.lua” x/
const charx file = "begin_program.lua”;

int res = lualL_loadfile(L, file);
if ( res==0 ) {
res = lua_pcall(L, 0, @, 0);
3
priv_lua_reporterrors(L, res);
return 0;

}
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Lua sensors

The script

begin_program. lua

IS quite simple, just the “greetings”
message

print(”--- mflua_begin_program says: ’Hello world!’ ---")

but usually the functions are more
complexes, as in
PRE_fill_envelope_rhs(rhs)
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Lua sensors

function PRE_fill_envelope_rhs(rhs)
print("PRE_fill_envelope_rhs")
local knots ,knots_list
local index,char
local chartable = mflua.chartable
knots = _print_spec(rhs)
index = (@+print_int(LUAGLOBALGET _char_code()))
+(@+print_int (LUAGLOBALGET _char_ext()))*256
char = chartable[index] or {}
knots_list = char[’knots’] or {}
knots_list[#knots_list+1] = knots
char[’knots’] = knots_list
chartable[index] = char
return 0
end

(it stores the knots of an envelope)
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Lua sensors

Within a sensor we may need to read the
state of METAFONT or executes some
METAFONT procedures or functions. Of
course we must be careful not to change the
data.
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Lua sensors

e |t's possible to use WEB2C to export a
PascalWEB symbol (macro, procedure,
function, variable etc.) to Lua: for
example the “WEB2C"” code for info field

/* @d info(#) == mem[#].hh.1lh %/
/*{the |info| field of a memory word} */
static int priv_mfweb_info(lua_State *L)
{
halfword p,q;
p = (halfword) lua_tonumber(L,1);
g = mem [p ].hhfield.v.LH ;
lua_pushnumber(L,q);
return 1;

}
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Lua sensors

becomes available to Lua as info after
Initialisation:

int mfluainitialize()

{
lua_State *L = Luas[0];
/* register lua functions */

iua_pushcfunction(L, priv_mfweb_info);
lua_setglobal (L, "info");

return 0;
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Lua sensors

e |t's also possible to translate a PascalWEB
procedure directly to Lua because they
are not so different. This is easy only if
the procedure or function involves
primitive types (integers and strings).

e the goal is minimize the numbers of
sensors, not to misure every part of
METAFONT
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Collecting data

To properly draw the outline of a glyph we

need the following information:

e the edge structures, i.e. the pixels of the
picture

e the paths from the filling of a contour

e the paths from the drawing of an
envelope with a pen

e the pen used in drawing an envelope.
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Collecting data

envelopes

contour

~—— 0 0 —
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Collecting data

The place where to put a sensor is given
Initially by trial and error. It’s mandatory to
have the METAFONT: The program and the
METAFONTbook at hands, but after a while
the number of the sensor has stabilised at
around twenty sensors (more or less).
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Collecting data

e For each character the sensors collect
the data and fill the char[’edges’ ],
char[’contour’] and char[’envelope’]

tables

e the sensor mflua_end_program (that is
just before the end of METAFONT)
processes the tables and store the result
into envelope.tex as METAPOST paths
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Collecting data
When METAFONT ends we have these data

(edges omitted):

/ / k
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OQutlines

To remove all the unnecessary paths we
follow 3 steps:

e Preparation
e Compute the intersections

e Remove unwanted paths
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. Preparation
Preparation: for each curve we check, with

the de Casteljau algorithm, if a point is
internal or not.

pixels
\

] \
i /

£
/ﬂ \ /?;
\points

It's easy to implement, but a Bézier curve is

not linear ( maybe implicitization ? )
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Preparation
We then remove all the subpath made with

internal points only — always with
de Casteljau algorithm.
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Intersections

We calculate the intersections with a trick.

For each pair of paths p; and po
end_program() appends a METAFONT
snippet to intersect.mf and then executes
MFLua on it; the log intersect.log is then
parsed to extract the intersections.
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Intersections

This is a typical METAFONT snippet:

batchmode;
message "BEGIN i=2,3j=1";
path p[l;
p1:=(133.22758,62) ..
controls (133.22758,62.6250003125)
and (133.22758,63.250000800781) ..
(133.22758,63.875001431885);
pP2:=(28.40971260273,62) ..
controls (63.349007932129,62)
and (98.28829,62) ..
(133.22758,62);
numeric t,u; (t,u) = pl1 intersectiontimes p2;
show t,u;

nn

message :

EuroBachoTgX meeting 2011 - Bachotek 23/32



Intersections
and this is a fragment of intersec. log:

This 1s METAFONT, Version 2.718281
(Web2C 7.5.7) (base=mf 2011.1.16)
10 APR 2011 08:35

**intersec.mf

(intersec.mf

BEGIN i=2, j=1

>> 0

>> 1

It's simple and fast — fast enough that is
not necessary to reimplement the
Intersection algorithm in Lua
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Remove paths

The last step is the more euristic one. The
strateqgy is to gradually clean up the outlines
by identifying a pattern and implementing a
filter for it with a Lua function.

-- remove 1isolate paths

valid_curves, matrix_inters =
_remove_isolate_path(valid_curves,
matrix_inters)

-- remove duplicate paths

valid_curves, matrix_inters =
_remove_duplicate_path_I(valid_curves,
matrix_inters)
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Remove paths

There are about twenty rules: some are
very specific for a char, and maybe some
are partially redundant. These rules are

(almost) valid for the lower case letter of
Concrete Roman 5 point.
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Remove paths

N
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Remove paths

(>
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Remove paths

O
-
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Conclusions

MFLua is still a proof-of-concept: there are
too much details to check and fix before to
start to consider as a tool to produce
vectorial fonts. For example, it should be
built at least for MicroSoft Windows; the
sensors should be located on a change file
mflua.ch and not in mf.web; the rules should
be general as much as possible.
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Conclusions

But the choice of external Lua files is not
bad: if it is too much difficult to find a
general algorithm at least they can be used
as auxiliaries files for a specific METAFONT

source.

MFLua is at
https://github.com/luigiScarso/mflua
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That's all

Thank you !
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