
AREA ENCLOSED BY A CYCLIC BÉZIER SPLINE
Bogusław Jackowski

The area between the graph of a function x 7→ (x,C(x)) and the x-axis (hatched region in the figure below):

x

y

x0 x1

y0

y1

y = C(x)

can be computed as the integral
∫ x1

x0

C(x)dx (1)

If the curve is given parametrically, i.e., t 7→ (Cx(t), Cy(t)), the integral (1) can be rewritten
(

by substituting

x = Cx(t), x0 = C
x(t0), x1 = C

x(t1), C(x) = C(C
x(t)) = Cy(t), and dx = dC

x(t)
dt
dt
)

as

∫ t1

t0

Cy(t)
dCx(t)

dt
dt (2)

If, furthermore, t0 6= t1 and (Cx(t0), Cy(t0)) = (Cx(t1), Cy(t1)), i.e., the curve is cyclic, the integral (2) yields
the area surrounded by the curve.

Assume that the cyclic curve is a spline composed of Bézier arcs B1, B2, . . . , Bn (each defined for 0 ≤ t ≤ 1).
The area of the region surrounded by the spline

x

y

B1(t)

B2(t)

B3(t)

is the the sum of integrals:
n
∑

i=1

∫ 1

0

B
y
i (t)
dBxi (t)

dt
dt

In the sequel, I’ll skip the index i—calculations are exactly the same for each i; the functions B(t) =
(Bx(t), By(t)) are third-degree polynomials:

B(t) = b0(1− t)
3 + 3b1(1− t)

2t+ 3b2(1− t)t
2 + b3t

3

where b0 = (b
x
0 , b
y
0), b1 = (b

x
1 , b
y
1), b2 = (b

x
2 , b
y
2), b3 = (b

x
3 , b
y
3) are points in the plane; b0, b3 are the nodes and

b1, b2 are the control points of the Bézier arc B.

The computation of the antiderivative of the functionBy(t)dB
x(t)
dt
(a fifth-degree polynomial) is an elementary

task (actually, it suffices to know that a derivative of tn is ntn−1 and, thus, the integral of tn is 1
n+1 t

n+1).
Skipping tedious calculations, I’ll present the final formula:

20

∫ 1

0

By(t)
dBx(t)

dt
dt =(bx1 − b

x
0)(10b

y
0 + 6b

y
1 + 3b

y
2 + b

y
3)+

(bx2 − b
x
1)(4b

y
0 + 6b

y
1 + 6b

y
2 + 4b

y
3)+

(bx3 − b
x
2)(b

y
0 + 3b

y
1 + 6b

y
2 + 10b

y
3)

(3)

1

The formula (3) stemmed from the discussion between Daniel H. Luecking and Laurent C. Siebenmann
on MetaFont/MetaPost Discussion List (metafont@ens.fr, 2000; presently the MetaPost Discussion List is
hosted by TUG—metapost@tug.org). Crucial was Luecking’s observation that three real multiplications per
Bézier arc suffice to compute the area surrounded by a Bézier spline; division of the whole sum by 20 is
a constant cost and thus can be neglected. Integer multiplication can be replaced by operations usually faster
than real multiplication (e.g., 10a = 8a+ 2a, 8a = a shifted left by 3 bits, 2a = a shifted left by 1 bit).

Of course, such an optimization of the arithmetic operations makes sense only in a “production” imple-
mentation of the algorithm. The implementation at the level of MetaFont/MetaPost macros can be neither
efficient nor precise. Nevertheless, the following code may sometimes prove useful:

vardef area(expr p) = % p is a B\’ezier segment; result = \int y dx
save xa, xb, xc, xd, ya, yb, yc, yd;
(xa,20ya)=point 0 of p;
(xb,20yb)=postcontrol 0 of p;
(xc,20yc)=precontrol 1 of p;
(xd,20yd)=point 1 of p;
(xb-xa)*(10ya + 6yb + 3yc + yd)
+(xc-xb)*(4ya + 6yb + 6yc + 4yd)
+(xd-xc)*(ya + 3yb + 6yc + 10yd)
enddef;

vardef Area(expr P) = % P is a cyclic path; result = area of the interior
area(subpath (0,1) of P)
for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;

Observe that the macro Area computes a signed area (for the negative counterclockwise-oriented curves,
and positive—for the clockwise-oriented ones). As a consequence, a non-trivial curve with selfintersection(s)
(e.g., eight-shaped) may surround a region with the area equal to zero.

Observe also that the calculations can be carried out with respect to the y-axis, thus the following code

vardef area(expr p) = % p is a B\’ezier segment; result = \int y dx
save xa, xb, xc, xd, ya, yb, yc, yd;
(-20xa,ya)=point 0 of p;
(-20xb,yb)=postcontrol 0 of p;
(-20xc,yc)=precontrol 1 of p;
(-20xd,yd)=point 1 of p;
(yb-ya)*(10xa + 6xb + 3xc + xd)
+(yc-yb)*(4xa + 6xb + 6xc + 4xd)
+(yd-yc)*(xa + 3xb + 6xc + 10xd)
enddef;

vardef Area(expr P) = % P is a cyclic path; result = area of the interior
area(subpath (0,1) of P)
for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;

will yield the same results as the former one (within the accuracy of rounding errors).

Gdańsk, April–May, 2011

2

