
ON COMPUTING A WINDING NUMBER FOR BÉZIER SPLINES
Bogusław Jackowski

Assume that we have given a point P in the plane and the planar curve C(t) defined for t0 ≤ t ≤ t1. The total
angle encircled by the radius PC(t) as t runs from t0 to t1 we will call the winding angle and denote by αw:

x

y

P

C(t0)

C(t1)

αw

C(t)

x

y

P

C(t0)

C(t1)

αw

C(t)

Note that the winding angle is insensitive to certain local properties of the curve C(t) (e.g., local loops): in
the figures above, the winding angle is the same in both cases (it is assumed that points P , C(t0) and C(t1)
coincide).

The winding angle is positive if the the point P lies to the right with respect to the point traversing the
curve, and negative otherwise.

Of course, the absolute value of a winding angle can be larger than 360◦:

x

y

P

αw>360◦
C(t0)

C(t1)

C(t)

For cyclic curves, the winding angle is always a multiple of 360◦, i.e., αw = 360
◦w, where w is an integer.

The entity w is called the winding number (for a given point and curve).

w = +2

w = +1

w =−1

w = +1

In the sequel, we will focus our attention on cylic Bézier splines.

The idea of the algorithm computing the winding number for Bézier splines is due to Laurent C. Siebenmann
(metafont@ens.fr, 2000; now the MetaPost Discussion List is hosted by TUG—metapost@tug.org). Sieben-
mann’s solution, however, was MetaPost-oriented—it exploited heavily the operation arctime, available in
MetaPost but unavailable, e.g., in MetaFont. Below, I’ll present an algorithm basing on the same idea but
referring to more elementary properties of a Bézier segment.

For a given point P and a Bézier spline C, we will try to find the winding angle by measuring the winding
angles for a discrete series of time points. First, we will try to measure angles between nodes 0, 1, 2, . . . , n
of the spline C. If the relevant Bézier segments are appropriately short, the sum of the angles yields the
total winding angle. The problem arises, when the Bézier arc is too long—see, e.g., the leftmost panel of the
first figure (the angle C(t0)PC(t1) equals 360

◦ − αw).

1

The main observation of Siebenmann is as follows: if the length of the subarc C(t) for t0 ≤ t ≤ t1 is shorter
than the length of the longer of the radii PC(t0) and PC(t1), than we can safely assume that the (acute)
angle between PC(t0) and PC(t1) is the winding angle. Actually, we do not need to know the exact length
of the arc—an approximation suffices. If Ba, Bb, Bc, and Bd are points defining a Bézier arc B (i.e., Ba and
Bd are its nodes, Bb and Bc are its control points), then

|BaBb|+ |BbBc|+ |BcBd| ≥ |B|

(| . . . | denotes the length of an interval and the length of a Bézier arc). In other words, we can safely use the
left-hand side of the above inequality instead of the true value of the arc length in the computation of the
winding angle/number.

The algorithm can be expressed in a “pseudocode” as follows:

input: a point P and a Bézier spline B, consisting of segments B1, B2, . . . , Bn
output: αw – the winding angle for P and B
procedure windingangle(P,B)
if B is a single segment
let Ba, Bb, Bc, Bd be the consecutive control nodes of the segment B
if min(|PBa|, |PBd|) < assumed minimal distance
exit (P almost coincides with B, winding angle incalculable)
fi

if |BaBb|+ |BbBc|+ |BcBd| > max(|PBa|, |PBd|)
return windingangle(P,B(0, 1/2)) + windingangle(B(1/2, 1))
else

return angle α between the radii PBa and PBd (−90
◦ < α < 90◦)

fi

else

return windingangle(P,B1) + . . .+ windingangle(P,Bn)
fi

end

An example of MetaPost/MetaFont implementation is given below:

1 vardef mock_arclength(expr B) = % |B| -- B\’ezier segment

2 % |mock_arclength(B)>=arclength(B)|

3 length((postcontrol 0 of B)-(point 0 of B)) +

4 length((precontrol 1 of B)-(postcontrol 0 of B)) +

5 length((point 1 of B)-(precontrol 1 of B))

6 enddef;

7 vardef windingangle(expr P,B) = % |P| -- point, |B| -- B\’ezier spline

8 if length(B)=1: % single segment

9 save r,v;

10 r0=length(P-point 0 of B); r1=length(P-point 1 of B);

11 if (r0<2eps) and (r1<2eps): % MF and MP are rather inaccurate, we’d better stop now

12 errhelp "It is rather not advisable to continue. Will return 0.";

13 errmessage "windingangle: point almost coincides with B\’ezier segment (dist="

14 & decimal(min(r0,r1)) & ")";

15 0

16 else:

17 v:=mock_arclength(B); % |v| denotes both length and angle

18 if (v>r0) and (v>r1): % possibly too long B\’ezier arc

19 windingangle(P, subpath (0, 1/2) of B) + windingangle(P, subpath (1/2, 1) of B)

20 else:

21 v:=angle((point 1 of B)-P)-angle((point 0 of B)-P);

22 if v>=180: v:=v-360; fi if v<-180: v:=v+360; fi

23 v

24 fi

25 fi

26 else: % multisegment spline

27 windingangle(P,subpath (0,1) of B)

28 for i:=1 upto length(B)-1: + windingangle(P,subpath (i,i+1) of B) endfor

29 fi

30 enddef;

2

Note that although the returned angle (line 23 in the MF/MP code above) is acute, the difference of the
component angles (line 21) can be ouside the interval 〈−180◦, 180◦〉; hence the normalization (line 22).

If the operation windingnumber is needed for some reasons, it can be implemented trivally:

vardef windingnumber (expr P,B) = % |P| -- point, |B| -- B\’ezier spline

windingangle(P,B)/360

enddef;

The operations windingangle or, equivalently, windingnumber can be used, e.g., for determining the mutual
position of two nonintersecting cyclic curves (whether one is embeded inside the other or not):

tertiarydef a inside b =

if path a: % |and path b|; |a| and |b| must be cyclic and must not touch each other

begingroup

save a_,b_; (a_,b_)=(windingnumber(point 0 of a,b), windingnumber(point 0 of b,a));

(abs(a_-1)<eps) and (abs(b_)<eps)

endgroup

else: % |numeric a and pair b|

begingroup

(a>=xpart b) and (a<=ypart b)

endgroup

fi

enddef;

Gdańsk, April–May, 2011

Postscriptum. In some cases, another definition, equivalent to the one formulated above may be useful (the
formulation, given below without a proof of equivalence, is a slightly edited excerpt from the Laurent C. Sie-
benmann’s email):

Assume that there are given curve C and point P . Choose at random a line segment emanating from the
point P to the point W , with W outside the bounding box of C and P . Inductively examine the intersection
points Q of PQ with C. Supposing these points Q are all “nondegenerate” intersections, they are also finite
in number, and a sign +1 or −1 is associated to each. Nondegenerate means that Q is a smooth point of c
and the tangent vector T to C at Q is not parallel to PQ, and that Q is not a point where C crosses itself.
The sign to use is the sign of the wedge product ‘(Q− P) wedge T ’, i.e.,

(Q− P) · (T rotated −90)

The sum of the signs is the winding number.

It is a probabilistic theorem that degenerate intersections will rarely be met.

3

