Math in

Con'TEXt

This talk

This is just a quick overview (Ulrik and Jacko have more detailed talks) of how
math is dealt with in ConTgXt MkIV.

Some characteristics

Math is about characters, symbols, accents and visual constructs like radicals
that have special meaning.

We have inline and display math and three font sizes to play with: text, script,
scriptscript.

bt _

d
a —_ —
e

Ideally we could enter Unicode but lack of fonts for editing leads to inputting
variables (a-z) in ascii.

Math is a family business although it stops after a few generations.

The way it goes in MKII

You key in some commands:

a+ \bf b+ \bic=\ttd+ \sse+ \cal £

In traditional TgX this becomes:

a + \fam7 b + \fam8 c = \fam9 d + \faml10 e + \famil f

This gets typeset as:
a+b+c=d+e+#

And represents:

a/F1 t/F2 bsr3 */r2 ¢/Fa =/rs5 d/re t/F2 €/F7 t/F2 f/F8

So, something happened in between.

The status quo

Code that showed up first dominates potentially better solutions.
Limitations in fonts (and 7 bit technology) made hacks into standards.
Small fonts (the 256 boundary) asked for more families than available.
Font models are rather resource demanding.

The plain TEX format steered implementations.

The rendering model has proven to be quite adequate in most cases.

The rise of Unicode changes the landscape.

Moving on

We no longer support 8 bit math and use Unicode exclusively.

We stick to one family per main style so in practice we only have regular and
bold.

Therefore we have (in most cases) ony one math font loaded.
Awaiting outcomes of the Gyre Math project we create virtual fonts runtime.

It is still unclear what Gyre wil provide but we can use the current mecha-
nisms for whatever comes out of it.

(This is also a consequence of the fact that MkIV only targets at LuaTgX.)

The way it goes in MKIV

You key in some commands:

a+ \bf b+ \bic=\ttd+ \sse+ \cal £

In ConTEXt this becomes:

a + bps + Ccpj = dyg * egs T fcal

Which is turned into:

(U+1D44E + U+1D41B + 0x1D484 = U+1D68D + U+1D5BE + U+1D4BB) /pq

This gets typeset as:
a+b+c=d+e+#

So, something happened after reading in.

The consequences

Traditional math fonts are unified using definitions in the font goodie files.
Some macros that build symbols are turned into virtual glyphs.

Ascii math alphabets in the input are remapped onto Unicode.

If possible processing is delegated Lua (and more will follow).

Stylistic sizes are supported as well as scaled fonts.

Help from LUA

Input is normalized to Unicode (relocation). This is also needed for cut and
paste.

Some sequences are collapsed (like negation) again to suit cut and paste.
For special cases there is optional punctuation control.
Some fonts provide alternate math shapes, like for super- and subscripts.
There is provisional support for auto scaled delimiters.

There is experimental support for math in tagged pdf and more will follow
when we've redone some math constructs.

A few examples of the implementation

The math virtual font builder runs on top of the general MkIV virtual loader.
The characters and symbols are initialized using a database.

Virtual fonts are defined in goodie files by specifying files and vectors.
Patches to fonts and parameter overload can also happen in the goodie file.

There are tracers that can be handy when developing code or fonts.

Virtual definitions

return {
name = "px-math",
version = "1.00",
comment = "Goodies that complement px math.",
author = "Hans Hagen",

copyright = "ConTeXt development team",
mathematics = {
mapfiles = {
"mkiv-px.map",

s
virtuals = {
["px-math"] = {
{ name = "texgyrepagella-regular.otf", features = "virtualmath", main = true },
{ name = "rpxr.tfm", vector = "tex-mr" } ,
{ name = "rpxmi.tfm", vector = "tex-mi", skewchar=0xT7F 1},
{ name = "rpxpplri.tfm", vector = "tex-it", skewchar=0x7F I},
{ name = "pxsy.tfm", vector = "tex-sy", skewchar=0x30, parameters = true } ,
{ name = "pxex.tfm", vector = "tex-ex", extension = true } ,
{ name = "pxsya.tfm", vector = "tex-ma" I},
{ name = "pxsyb.tfm", vector = "tex-mb" I},
{ name = "texgyrepagella-bold.otf", vector = "tex-bf", skewchar=0x7F } ,
{ name = "texgyrepagella-bolditalic.otf", vector = "tex-bi" } ,
{ name = "lmsans10-regular.otf", vector = "tex-ss", optional=true },
{ name = "lmmonolO-regular.otf", vector = "tex-tt", optional=true },

Patches

local patches = fonts.handlers.otf.enhancers.patches

local function patch(data,filename,threshold)
local m = data.metadata.math
if m then
local d = m.DisplayOperatorMinHeight or O
if d < threshold then
patches.report ("DisplayOperatorMinHeight (%s -> %s)",d,threshold)
m.DisplayOperatorMinHeight = threshold
end

end
patches.register("after","check math parameters","asana",function(data,filename) patch(data,filename,1350) end)

local function less(value,target,original) return 0.25 * value end

return {
name = "asana-math",
version = "1.00",
comment = "Goodies that complement asana.",
author = "Hans Hagen",

copyright = "ConTeXt development team",
mathematics = {
parameters = {
StackBottomDisplayStyleShiftDown = less,

StackBottomShiftDown = less,
StackDisplayStyleGapMin = less,
StackGapMin = less,
StackTopDisplayStyleShiftUp = less,
StackTopShiftUp = less,
StretchStackBottomShiftDown = less,
StretchStackGapAboveMin = less,
StretchStackGapBelowMin = less,
StretchStackTopShiftUp = less,

Definitions

[0x007C] = {
adobename="verticalbar",
category="sm",
cjkwd="na",
contextname="textbar",
description="VERTICAL LINE",
direction="on",
linebreak="ba",
mathspec={

{
class="nothing",
name="arrowvert",

o
class="delimiter",

name="vert",

class="open",
name="lvert",

class="close",
name="rvert",

class="relation",
name="mid",

1,

unicodeslot=0x007C,

[0x2111]={
adobename="Ifraktur",
category="1u",

description="BLACK-LETTER CAPITAL I",
direction="1",

linebreak="al",

mathclass="default",

mathname="Im",

specials={ "font", 0x0049 },
unicodeslot=0x2111,

[0x1D69A] = {
category="11",

description="MATHEMATICAL MONOSPACE SMALL Q",
direction="1",
linebreak="al",

specials={ "font", 0x0071 },
unicodeslot=0x1D69A,

Typetaces

\starttypescript [math] [latin-modern] [size]
\definebodyfont [10pt] [mm]
[mr=LMMathRomani0-Regular sa 1,
mb=LMMathRoman10-Bold sa 1]

\stoptypescript

\starttypescript [math] [latin-modern]

\loadfontgoodies [lm-math]
\stoptypescript

\starttypescript [modern,default]
\definetypeface [modern] [rm] [serif] [modern] [latin-modern]
\definetypeface [modern] [ss] [sans] [modern] [latin-modern]
\definetypeface [modern] [tt] [mono] [modern] [latin-modern]
\definetypeface [modern] [mm] [math] [modern] [latin-modern]
\stoptypescript

Virtual glyphs

local function jointwo(main,characters,id,size,unicode,ul,d12,u2)
local cl1, c2 = characters[ul], characters[u2]
if c1 and c2 then
local wl, w2 = cl.width, c2.width
local mu = size/18
characters[unicode] = {

width = wl + w2 - di2*mu,

height = max(cl.height or 0, c2.height or 0),
depth = max(cl.depth or 0, c2.depth or 0),
commands = {

{ "slot", id, ul },
{ "right", -d12+*mu } ,
{ "slot", id, u2 },

+
+
end
end
jointwo(main,characters,id,size,0x21A6,0xFE321,0,0x02192) -- \mapstochar\righ
jointwo(main,characters,id,size,0x21A9,0x02190, joinrelfactor,0xFE323) -- \leftarrow\joinr

jointwo(main,characters,id,size,0x21AA,0xFE322, joinrelfactor,0x02192) -- \lhook\joinrel\r

Tracing

There is quite some tracing built into MkIV and there are also some extra modules,

like s-fnt-23.

(-30,680)

U+00066

|
top,light
(250,780)

(100,0) I
bottom_le:

(-320,720)

(-400, 42

botton right

(,

l)zo)
®

[P — " -

top_!‘ight
(65 720)

0.520!

U+1D453

