
Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Reusing content in LATEX
Wielokrotne wykorzystanie treści w LATEXu

Marcin Borkowski

Adam Mickiewicz University

2011-04-29



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

1 Introduction

2 Design questions

3 Methods

4 Existing solutions

5 The xrcise package

6 Implementation issues

7 Another approaches



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Problem statement

Assume that we want to prepare a problem book for a math class.
It would be nice to put exercises and answers (and possibly other
things, like hints, solutions, remarks etc.) all in one place, and
then instruct LATEX to typeset a “student’s version” (exercises
without solutions), “teacher’s version” (exercises with solutions),
answer sheet (answers only) etc.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Plan of the presentation

We will first discuss possible methods of achieving such an effect,
mention their advantages and drawbacks; then we will look at
existing packages offering suitable features; finally, we will examine
in more detail the xrcise package, mentioning a few caveats
important for everyone who would like to write suitable macros
themselves.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Emphasis

There are at least two packages on CTAN which enable preparing
a problem set (and a third one on its way;-)), but none of them
has all features one might need.

Therefore, we will only briefly describe the existing packages, and
we will concentrate on the problems one has to face when
programming one’s own package (with a few examples from my
xrcise package).



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Design questions

Before choosing the method to store the content to be reused, one
has to answer a few questions.

What size are the chunks of saved text going to be?

What is there going to be in the chunks of text?

How many chunks are needed?

How are we going to specify which “version” we want typeset?

What input format are we going to use?



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Chunk size

What size are the chunks of saved text going to be?

(Smaller than paragraphs, single paragraphs, multiple paragraphs?)

We will have to handle spaces and \par’s.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Chunk content

What is there going to be in the chunks of text?

(Ordinary text, text with TEX macros, non-ASCII text (using
inputenc), verbatim text?

Some methods don’t like some kinds of content. . .



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

One or many?

Do we need one chunk at a time or do we want to accumulate
a series of them? If we need more than one, will the chunks have
names or numbers? If numbers, are they going to be consecutive
ones?

When we only need one chunk at a time, it is enough to use one
toks/box register, file or macro. In case of a series, we have to deal
with accumulating and maybe automatic numbering (possibly with
omissions).



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Specifying versions

How are we going to specify which “version” we want typeset?

(Package/class option or macro, command line, config file,
“driver” files?)

LATEX doesn’t support command line parameters well. If we want
to use this method, it’s probably best to use a config file and
a wrapper script.

A package option may seem convenient, but changing the file
every time we want “the other” version is rather awkward.

A config file might be especially nice when using a revision control
system, when we don’t have to register the config in it.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Input format

Are we going to require a strict format for specifying chunks to be
reused or do we want to allow for some flexibility (like in LATEX
itself)? Are we going to apply macros or environments?

Macros are much easier to code, but may be perceived as
“inelegant” and user-nonfriendly (as opposed to environments)
when dealing with larger chunks of text.

On the other hand, when using environments, we have to take care
of space leaks.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Methods of saving and retrieving information in LATEX

token lists,

macros,

boxes,

external files generated on-the-fly,

hand-made external files.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Token lists

There are 256 token lists (32768 in ε-TEX), identified by a number.
They are allocated by the LATEX kernel, so you can’t rely on a toks
register having some number. This means that you’d probably
want to use only one of them and perhaps accumulate content in
it.

I have to admit that I don’t have much experience with toks
registers (at least not with using them for the purpose
discussed). . .



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Macros

There may be infinitely many (well, at least potentially more than
token lists) macros, and they are identified by name and not by
number. This means that allocation is much easier.

However, in case of really large amount of stuff, we might run out
of memory.

Also, macros (just like toks registers, for that matter. . . ) and
verbatim don’t mix well.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Boxes

Box registers have limitations similar to toks, but have also some
advantages: they are easier to “delimit” than toks or macros, and
there is no problem with putting verbatim content into boxes.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Autogenerated files

Automatically (on-the-fly) generated files are very handy (LATEX
itself uses this approach, e.g., with the label/ref mechanism), but
may cause problems when inputenc (or fragile commands) are
used (unless the user \protects them).

For example, assume we want to typeset some part of a document
verbatim and then normally (this is very useful when writing
documentation on LATEX packages etc.). A customary way to do it
is to save it to an external file, then input it verbatim, then input it
normally (this is exactly what the demo environment of a package
called sverb does). However, if we use inputenc and non-ASCII
characters in the chunk, we get wrong results. (The
filecontents and moreverb packages do it right, but do not
have an analogue of the demo environment.)



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Hand-made external files

This may seem a stupid and/or primitive approach, but it turns out
to be very useful (my package xrcise uses exactly this method).
The main advantage is that it is very easy to specify different
“versions” of the file without having to mess up with package
options etc., which is especially handy when using a revison control
system. It is also (obviously) useful when we have some content to
be reused across multiple documents (bibliographies being
probably the most obvious example).

In this approach, we prepare at least two files: the main (“master”
or “driver”) file (possibly in a few versions), and the file with the
content to be reused.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Existing packages

General purpose:

filecontents

moreverb

sverb

version[s]

optional

extract

Problem sets:

answers

probsoln

(The above lists are not exhaustive.)



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The filecontents, moreverb and sverb packages

These packages allow writing some text verbatim to an external
file. (The sverb package doesn’t work with inputenc.)



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The version, versions and optional packages

These packages allow marking some parts of the document as
“belonging” to a particular version and selecting a particular
version in the preamble.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The extract package

The extract package creates an “extraction” file during an
otherwise normal LATEX run. This file can contain, for example, all
\chapter commands and all \exercise environments from the
main file. It can be then processed to obtain a version of the main
document, but only with exercises.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The answers package

This package uses on-the-fly generated files. It seems to be not
very user-friendly, but very configurable and quite powerful. The
package does not really support handling different “versions” (with
the only exception of putting all normally saved content in place of
appearance in the source file).



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The probsoln package

This package supports only “problems” and “solutions” (i.e., no
hints, remarks etc), and supports different “versions” (i.e., making
e.g. solutions visible or invisible). It can also support typesetting
solutions in other part of the document through usage of
a hand-made external file. As a bonus, the problems in the
external file may be labeled and the user may choose to include
only a (specified or random) subset of them. Unfortunately, the
package is not as configurable as answers.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The xrcise package

Around 10 years ago, I didn’t know of any package doing what I
needed. And what I needed (well, maybe just wanted) was to have
a package enabling me to specify exercises consisting of questions
and (optionally): labels, source information, answers, solutions,
remarks. Then, I wanted to be able to typeset a “teacher’s
version”, including all the material, or “student’s version”,
including only questions and hints. Additionally, I wanted to be
able to typeset only the answers, in a compact format (as many
answers in one line as can fit)—for example at the end of the
“student’s version”—so I didn’t assume that each answer etc. is
a paragraph on its own.

This way, the xrcise package was born. Currently I am reviewing
the code and polishing it with the intent of uploading the package
to CTAN soon.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The exercise file

All the exercises are contained in a file—call it
exercises.tex—and have the following format:

\begin{exercise}

\exerciselabel{first}

\begin{question}

Please answer the question.

\end{question}

\source{Source}

\answer{42.}

\begin{solution}

This is the full solution text.

\end{solution}

\begin{remark}

This question is stupid.

\end{remark}

\end{exercise}



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

The driver file

The “driver” file may look as simple as

\documentclass{article}

\usepackage{xrcise}

\begin{document}

\input{exercises}

\end{document}

This typesets only the questions.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Selecting what to typeset and how

Each part of the exercise may be typeset as a “short” or “long”
version. For example, to typeset the hint in a “short” version, one
has to say \usecommandversion{hint}{short}. To typeset the
answer in the “long” version, use
\usecommandversion{answer}{long}. To omit remarks from
the output file, use \usecommandversion{remark}{void}.

Usually, the “long” version is typeset in a paragraph(s) on its own,
and preceded by a label like “Exercise 2” or “Hint:”. On the other
hand, a short version is typeset “inline” (without starting a new
paragraph) and without any labels. (The labels are configurable
through \renewcommand.)



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Possible extensions

As can be easily seen, currently the package is rather crude. It
would be nice to have, for example, package options (and
corresponding commands) enabling typical scenarios. Another
thing I consider is adding support for “hiding” commands like
\section or \chapter in the exercise file. Yet another one would
be configurable exercise parts.

I plan to include support for above features within a few weeks and
upload the first version to CTAN.

All other feature requests are welcome!



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Implementation issues

Space leaks

\par leaks

Empty parts

Switching commands



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Space leaks

Since every environment is usually ended by \end{foo} (and
relying on the user to type \end{foo}% is rather naive), one has to
ignore the spaces after \end. This is achieved (unsurprisingly) by
the \ignorespacesafterend command.

Using an \unskip at the beginning of the environment is also
tricky, since it will result in an error when the environment starts in
vertical mode. Thus, one may use \ifhmode\unskip\fi instead.

Finally, to get rid of the space after \begin{foo} it is enough to
say \ignorespaces in the definition of the “opening” part of the
environment.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

\par leaks

In case of a “short” version of the exercise environment (for
instance, when typestting only answers in a “compact” mode), one
has to take care of blank lines between exercises (again, relying on
the user not to have any blank lines there is a bad idea). This may
be achieved by a simple trick:

\newcommand{\convertnextpartovoid}

{\def\par{\let\par=\endgraf}}

\newenvironment{shortexercise}

{\ifhmode\unskip\fi

\refstepcounter{exercisenumber}\ignorespaces}

{\aftergroup\convertnextpartovoid\ignorespacesafterend}



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Empty parts of an exercise

Notice that shortexercise increments the counter, but does not
typeset anything by itself (in fact, not even a space). This is right,
since when typesetting e.g. only the answers we do not want to
have an “empty” number in case of exercises without the answer,
so it is the \shortanswer which actually typesets the number.



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Switching commands

This part is a bit tricky. We want, for example,
\usecommandversion{answer}{short} to perform
\let\answer=\shortanswer. However, since also the right-hand
part of the assignment needs to be inserted in
\csname. . . \endcsname, we can’t rely on \expandafter. Thus,
we can do the trick in the following way:

\newcommand{\usecommandversion}[2]{%

\edef\dousecommandversion{%

\noexpand\let

\expandafter\noexpand\csname #1\endcsname

=\expandafter\noexpand\csname #2#1\endcsname

\dousecommandversion

}

(In reality, this handles also \endfoo command, so that
\usecommandversion works with both commands and
environments.)



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

A macro-based approach

Another approach could be based on macros. For example, the
answer to exercise number 5 might be stored in macro called
\csname answer5\endcsname and so on. Then one could typeset
all the answers by looping over all the exercise numbers, checking
whether a suitably named macro exists (to cater for exercises
without answers) and if it does, typesetting it in some way.

However, this would require to use commands and not
environments (one could also use “fake environments”, i.e.,
commands defined by a construct like
\def\foo #1 \end{foo}{\unskip ...}, but this will not
support verbatim text (nor other catcode tricks), and will issue
a cryptic error message in case of a typo in \end{foo}).



Introduction Design questions Methods Existing solutions The xrcise package Implementation issues Another approaches

Yet another approach

Use ConTEXt;-).



Thank you for your attention!
or

Wake up!


	Introduction
	Introduction

	Design questions
	Design questions

	Methods
	Methods

	Existing solutions
	Existing solutions

	The xrcise package
	The xrcise package

	Implementation issues
	Implementation issues

	Another approaches
	Another approaches

	Appendix

