PARAMETRIC MATH SYMBOL FONT

Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski
An OpenType math font contents: repetition

According to the “Draft Unicode Technical Report #25” by Barbara Beeton, Asmus Freytag and Murray Sargent III, math font should contain the following groups of glyphs:

<table>
<thead>
<tr>
<th>Plain (upright, serifed)</th>
<th>Latin, Greek and digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic</td>
<td>Latin and Greek</td>
</tr>
<tr>
<td>bold</td>
<td>Latin, Greek and digits</td>
</tr>
<tr>
<td>bold italic</td>
<td>Latin and Greek</td>
</tr>
<tr>
<td>sans-serif</td>
<td>Latin and digits</td>
</tr>
<tr>
<td>sans-serif italic</td>
<td>Latin</td>
</tr>
<tr>
<td>sans-serif bold</td>
<td>Latin, Greek and digits</td>
</tr>
<tr>
<td>sans-serif bold italic</td>
<td>Latin</td>
</tr>
<tr>
<td>script (calligraphic)</td>
<td>Latin, Greek and digits</td>
</tr>
<tr>
<td>bold script (calligraphic)</td>
<td>Latin and Greek</td>
</tr>
<tr>
<td>Fraktur</td>
<td>Latin</td>
</tr>
<tr>
<td>bold Fraktur</td>
<td>Latin</td>
</tr>
<tr>
<td>double-struck</td>
<td>Latin and digits</td>
</tr>
<tr>
<td>monospace</td>
<td>Latin and digits</td>
</tr>
</tbody>
</table>
An OpenType math font contents: sub- and superscripts

The “Draft Unicode Technical Report #25” does not specifies details concerning sub- and superscripts of the first and second order; virtually, any glyph can be accompanied by its sub- and/or superscript counterpart, although it would unnecessarily inflate the font. Thus, in T\textup{\TeX} Gyre fonts (each counting more than 4000 glyphs), we limited the number of sub- and superscripts to such glyphs that can likely appear in such a role (according to our intuition).
An OpenType math font contents: sub- and superscripts

The “Draft Unicode Technical Report #25” does not specifies details concerning sub- and superscripts of the first and second order; virtually, any glyph can be accompanied by its sub- and/or superscript counterpart, although it would unnecessarily inflate the font. Thus, in \TeX Gyre fonts (each counting more than 4000 glyphs), we limited the number of sub- and superscripts to such glyphs that can likely appear in such a role (according to our intuition).

CM, optical (fancy) scaling: \(abc \quad abc \quad abc \quad abc \)
An OpenType math font contents: sub- and superscripts

The “Draft Unicode Technical Report #25” does not specifies details concerning sub- and superscripts of the first and second order; virtually, any glyph can be accompanied by its sub- and/or superscript counterpart, although it would unnecessarily inflate the font. Thus, in T\TeX{} Gyre fonts (each counting more than 4000 glyphs), we limited the number of sub- and superscripts to such glyphs that can likely appear in such a role (according to our intuition).

CM, optical (fancy) scaling: abc abc abc

Euler, non-uniform scaling: abc abc abc
An OpenType math font contents: sub- and superscripts

The “Draft Unicode Technical Report #25” does not specifies details concerning sub- and superscripts of the first and second order; virtually, any glyph can be accompanied by its sub- and/or superscript counterpart, although it would unnecessarily inflate the font. Thus, in \TeX Gyre fonts (each counting more than 4000 glyphs), we limited the number of sub- and superscripts to such glyphs that can likely appear in such a role (according to our intuition).

CM, optical (fancy) scaling: \[\text{abc abc abc} \]

Euler, non-uniform scaling: \[\text{abc abc abc} \]

\TeX Gyre, non-uniform scaling: \[\text{abc abc abc} \]
An OpenType math font contents: sub- and superscripts

The “Draft Unicode Technical Report #25” does not specifies details concerning sub- and superscripts of the first and second order; virtually, any glyph can be accompanied by its sub- and/or superscript counterpart, although it would unnecessarily inflate the font. Thus, in \TeX\ Gyre fonts (each counting more than 4000 glyphs), we limited the number of sub- and superscripts to such glyphs that can likely appear in such a role (according to our intuition).

CM, optical (fancy) scaling:

\begin{align*}
 a & bc & abc & abc \\
 a & bc & abc & abc
\end{align*}

Euler, non-uniform scaling:

\begin{align*}
 a & bc & abc & abc \\
 a & bc & abc & abc
\end{align*}

\TeX\ Gyre, non-uniform scaling:

\begin{align*}
 a & bc & abc & abc \\
 a & bc & abc & abc
\end{align*}

default, uniform scaling:

\begin{align*}
 a & bc & abc & abc \\
 a & bc & abc & abc
\end{align*}
The assembling of an OpenType math font

MAIN FONT
- aąbcćAĄBCĆ012
- abcABC012
- abcABCabcABC

GREEK FONT
- αβγΑΒΓαβγΑΒΓ
- αβγΑΒΓαβγΑΒΓ

HEBREW 4-LETTER FONT
- נבגא

MATH SYMBOLS AND SHAPES
- ∫∮∮∮≤≥→⇒⇒

SANS SERIF FONT
- abcABC012abcABC012
- abcABCabcABCαβγδε

CALLIGRAPHIC FONT
- abcABCabcABC

DOUBLE STRUCK FONT
- abcABC012ΩΠΓΠ

FRAKTUR FONT
- abcABCabcABC

MONOSPACE FONT
- ABCabc012

PARAMETRIC MATH SYMBOL FONT
The assembling of an OpenType math font
The assembling of an OpenType math font

FONT EDITOR

MATH FONT

MAIN FONT
GREEK FONT
HEBREW 4-LETTER FONT
SANS SERIF FONT
CALLIGRAPHIC FONT
DOUBLE STRUCK FONT
FRAKTUR FONT
MONOSPACE FONT

FORMATTING EDITORS: WORD TeX et al.
The assembling of an OpenType math font

MAIN FONT
GREEK FONT
MATH SYMBOLS AND SHAPES
HEBREW 4-LETTER FONT
SANS SERIF FONT
DOUBLE STRUCK FONT
CALLIGRAPHIC FONT
FRAKTUR FONT
MONOSPACE FONT

Lua\TeX

to a great extent may play a role of a FONT EDITOR
The assembling of an OpenType math font

MAIN FONT
GREEK FONT
MATH SYMBOLS AND SHAPES
HEBREW 4-LETTER FONT
SANS SERIF FONT
DOUBLE STRUCK FONT
CALLIGRAPHIC FONT
FRAKTUR FONT
MONOSPACED FONT

LuatEX
to a great extent may play a role of a FONT EDITOR
Lua\TeX as a “font editor”

\nopagenumbers \input otf-math
\OMtrm{DejaVuSans.ttf}
\OMtbf{DejaVuSans-Bold.ttf}
\OMtit{DejaVuSans-Oblique.ttf}
\OMtbi{DejaVuSans-BoldOblique.ttf}
\OMmat{dejavu-math-1027.otf}
\OMsize{12pt}
\OMbaselines{1.2em}{0.3em}{0.3em}
\OMfix
Lua\TeX{} as a "font editor"

\begin{verbatim}
\nopagenumbers \input otf-math
\OMotrm{DejaVuSans.ttf}
\OMotbf{DejaVuSans-Bold.ttf}
\OMotit{DejaVuSans-Oblique.ttf}
\OMotbi{DejaVuSans-BoldOblique.ttf}
\OMmat{dejavu-math-1027.otf}
\OMsize{12pt}
\OMbaselines{1.2em}{0.3em}{0.3em}
\OMfix

\$\$
\it
\delta_{ij} = \begin{cases}
0 & \text{for } i = j \\
1 & \text{for } i \neq j
\end{cases}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\$
\end{verbatim}
\sqrt{\frac{1}{2}} \approx 0.7 \quad f'(x) = \left(\frac{1}{x^2} \right)
LuaTeX as a “font editor”

\nopagenumbers \input otf-math
\OMtrm{DejaVuSans.ttf}
\OMtbf{DejaVuSans-Bold.ttf}
\OMtit{DejaVuSans-Oblique.ttf}
\OMtbi{DejaVuSans-BoldOblique.ttf}
\OMmat{dejavu-math-1027.otf}
\OMsize{12pt}
\OMbaselines{1.2em}{0.3em}{0.3em}
\OMfix

$$
\langle \langle (x^2)^2 \rangle^2 \rangle^2
$$

$$
\left(\right)^x$$
Question: so, what is missing
Question: so, what is missing
Answer: handling details
Question: so, what is missing
Answer: handling details
Question: so, what is missing
Answer: handling details
The sketch of the solution
The sketch of the solution

We can formulate the problem to solve as follows: given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)TEX with the given font.
The sketch of the solution

We can formulate the problem to solve as follows: given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)\TeX\ with the given font.

0. The procedure seems straightforward
The sketch of the solution

We can formulate the problem to solve as follows:
given (say, by a customer) a font, add an adequate, i.e.,
optically consistent, math companion to be used
in (Lua)\TeX{} with the given font.

0. The procedure seems straightforward
1. Prepare a generic set of (Lua)\TeX{} macros
The sketch of the solution

We can formulate the problem to solve as follows:

given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)TEX with the given font.

0. The procedure seems straightforward
1. Prepare a generic set of (Lua)TEX macros
2. Prepare a generic set of METAPOST (METATYPE1) macros
The sketch of the solution

We can formulate the problem to solve as follows: *given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)TEX with the given font.*

0. The procedure seems straightforward
1. Prepare a generic set of (Lua)TEX macros
2. Prepare a generic set of METAPOST (METATYPE1) macros
3. Provide a set of adequate parameters for the math companion for a given font (controlling ovalness, incisions, thickness of stems, x-height, etc.)
The sketch of the solution

We can formulate the problem to solve as follows: *given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)\TeX{} with the given font.*

0. The procedure seems straightforward

1. Prepare a generic set of (Lua)\TeX{} macros

2. Prepare a generic set of METAPOST (METATYPE1) macros

3. Provide a set of adequate parameters for the math companion for a given font (controlling ovalness, incisions, thickness of stems, x-height, etc.)

The good news is that the points 1 and 2 are, to some extent, accomplished. We use a Lua\TeX{} (p. 1) package (exploiting heavily Hans Hagen’s font handling macros—thanks!) in our office; the METATYPE1 (p. 2) macros which we use for generating GUST e-Foundry fonts are to a great extent parametric, although from font to font some modules needed amending and enhancing.
The sketch of the solution

We can formulate the problem to solve as follows:
given (say, by a customer) a font, add an adequate, i.e., optically consistent, math companion to be used in (Lua)TEX with the given font.

0. The procedure seems straightforward
1. Prepare a generic set of (Lua)TEX macros
2. Prepare a generic set of METAPOST (METATYPE1) macros
3. Provide a set of adequate parameters for the math companion for a given font (controlling ovalness, incisions, thickness of stems, x-height, etc.)

The good news is that the points 1 and 2 are, to some extent, accomplished. We use a LuaTEX (p. 1) package (exploiting heavily Hans Hagen’s font handling macros—thanks!) in our office; the METATYPE1 (p. 2) macros which we use for generating GUST e-Foundry fonts are to a great extent parametric, although from font to font some modules needed amending and enhancing.

the allegory of the state of the art (in the case of doubts, consult Willi Egger)
That’s all, so far…—thank you for your attention!
That’s all, so far...—thank you for your attention!

Let’s hope that the next BachoTeX meeting will be a little bit warmer (as far as the weather is concerned). Let’s check...

CREDITS

Cello back photo by Steffen Nowak
http://www.nowakviolins.co.uk/tonewood%20violin,%20viola.htm

Sun face
http://cliparts.co/woodcut-clipart