The state of OpenType math typesetting

Ulrik Vieth Stuttgart, Germany

EuroBachoT_EX 2011 Brodnica, Poland, 2011

Overview of this talk

- Review of OpenType math support
 - Technology review: Unicode and OpenType math
 - Available support in engines, macros, fonts
- Experiences with OpenType math support
 - Known problems in engines, macros, fonts
 - · Workarounds and Solutions
- Samples of OpenType math typesetting
 - Choices of test platforms
 - · Choices of OTF math fonts
 - Examples of math typesetting
- Summary and Conclusions

Technology Review: Unicode math

- What ist Unicode?
 - encoding standard for (input) characters and symbols
- What is Unicode math?
 - addition of math symbols and alphabets to Unicode
 - coordinated by STIX group of publishers (late 1990s)
- What does Unicode math provide?
 - hundreds of math symbols added to slots U+2xxx
 - dozens of math alphabets added to slots U+1Dxxx
 - size variants of math symbols are not encoded: different size, same symbol ⇒ same meaning
 - font variants of math alphabets are encoded: different font, same letter ⇒ different meaning

Technology Review: OpenType math

- What ist OpenType?
 - font technology for (output) glyphs and symbols
 - developed by Adobe (PostScript) and MS (TrueType)
- What is OpenType math?
 - addition of MATH table to OpenType font format
 - developed for MS Office 2007 (experimental)
- What does OpenType math provide?
 - · global font metrics for spacing of math formulas
 - glyph metrics for positioning of math accents
 - lookups for horizontal/vertical variants/constructions
 - · base glyphs addressed by Unicode slots
 - variant glyphs addressed through lookups

Engine support for OpenType math

- MS Office 2007, 2010
 - reference implementation of OpenType math
 - some generalizations of concepts from T_EX
- XeT_EX
 - support for OpenType math since XeT_EX 0.97 (2007)
 - uses mapping of OpenType to TEX parameters
 - makes limited use of OpenType math features
- LuaT_EX
 - support for OpenType math since LuaT_EX 0.40 (2009)
 - uses combined set of OpenType and T_EX parameters
 - · aims to provide full support of OpenType math features

Macro support for OpenType math

- XeT_EX or LuaT_EX (generic)
 - only primitive support for OpenType math
 - no high-level support for OpenType math
 - luaotfload for low-level font loading (LuaT_EX)
- XeLaT_EX or LuaLaT_EX
 - fontspec for high-level text font selection
 - unicode-math for math font selection
 - exp13 for intermediate macro layers
 - luaotfload for low-level font loading (LuaT_EX)
- ConT_EXt Mk IV
 - support for OpenType math since LuaT_EX 0.40
 - font-otf.lua for low-level font loading

Font support for OpenType math (I)

Fonts (more or less) ready for production:

- Cambria Math
 - shipped with MS Office 2007, 2010, Windows 7
 - reference implementation of OpenType math font
- Asana Math (Apostolos Syropoulos)
 - Palatino-like font derived from pxfonts
 - available from CTAN, included in T_EX Live 2010
- XITS Math (Khaled Hosny)
 - Times-like font derived from STIX Fonts 1.0
 - available from CTAN, included in T_EX Live 2010
- Latin Modern Virtual (Hans Hagen)
 - virtual OpenType font, only for ConT_EXt Mk IV

Font support for OpenType math (II)

Fonts under development:

- Neo Euler (Hermann Zapf, Khaled Hosny)
 - derived from redesign of AMS Euler
 - development supported by DANTE
- Lucida Math (Bigelow & Holmes, Khaled Hosny)
 - · derived from redesign of Lucida family
 - development supported by TUG
- Latin Modern, T_EX Gyre Math (GUST Foundry)
 - developed with MetaPost / MetaType 1
 - development supported by various LUGs

How to use OpenType math (I)?

- ConT_EXt Mk IV
 - support for OpenType math in ConT_EXt kernel
 - predefined typescripts for Cambria, Asana, XITS, etc.
 - · additional typescripts can be loaded as needed

```
\usetypescript[cambria]
\setupbodyfont[cambria,10pt]
```

- LuaLaT_EX + XeLaT_EX
 - support by fontspec + unicode-math packages
 - no predefined font sets, fonts loaded on demand
 - configuration options to customize math style, etc.

```
\documentclass{article}
\usepackage{fontspec,unicode-math}
\setromanfont[Ligatures=TeX]{Cambria}
\setmathfont[math-style=TeX]{Cambria Math}
```

How to use OpenType math (II)?

- 3 choices of T_EX engines + macro packages
 - LuaT_EX with ConT_EXt
 - LuaT_EX with LuaLaT_EX
 - XeT_EX with XeLaT_EX
- 4 choices of OpenType text + math fonts
 - Cambria + Cambria Math
 - XITS + XITS Math
 - TG Pagella + Asana Math
 - TG Pagella + Neo Euler
- · more choices of fonts to come
 - · Lucida Bright + Lucida Math
 - Latin Modern + LM Math
 - TeX Gyre + TG Math

Experiences with OpenType math

- Experiences testing OpenType math
 - Testing of OpenType math = Testing of a complex system
- Possible causes of testing problems
 - Problems with T_EX engines
 - Problems with macro packages
 - Problems with OpenType fonts
 - Font-loading problems

Problems with T_EX engines (I)

Fatal engine problems (crashes)

- XeT_EX: 64-bit binaries crashing with segfaults
 - Status: unresolved (broken) in T_EX Live 2010
 - Workaround: use 32-bit binaries instead
 - Solution: patch available, wait for TEX Live 2011
- LuaT_FX: crashing when loading empty fonts
 - Status: fixed in LuaT_EX 0.61
 - Solution: update LuaTEX from TL Contrib
- LuaT_EX: crashing when calling os.execute
 - Status: fixed in LuaT_EX 0.70
 - Workaround: \directlua{os.execute = nil}
 - Solution: update T_EX Live packages frequently

Problems with TEX engines (II)

Non-fatal engine problems (mis-features)

- LuaT_EX: Incorrect size of big delimiters
 - Problem: off-by-one error (skipped last size)
 - Status: fixed in LuaT_EX 0.61
 - Solution: update LuaT_EX from TL Contrib
- XeT_EX: Inconsistent alignment of super-/subscripts
 - · Problem: shift depends on ascenders/descenders
 - Status: unresolved in XeT_EX engine
 - Workaround: add empty groups in math input
- XeTeX: Incorrect size of wide math accents
 - Problem: width of accents includes super-/subscripts
 - Status: unresolved in XeT_EX engine
 - · Workaround: add empty groups in math input

Problems with macro packages

Macro problems (mis-features)

- unicode-math: Incorrect font metrics with XeT_EX
 - Problem: OpenType math fonts loaded into family 4 but font metrics in XeT_EX taken from families 2+3
 - Workaround: add explicit font loading
 - Status: fixed in recent versions of unicode-math
 - Solution: update T_EX Live packages
- luaotfload: Incorrect mapping of font weights
 - Problem: demibold not recognized as bold series
 - · Workaround: add explicit font names for BoldFont
 - Status: fixed in recent versions
 - Solution: update T_EX Live packages

Problems with OpenType fonts (I)

Font parameter issues (mis-features)

- Cambria Math: Incorrect size of display operators
 - Problem: Incorrect value of DisplayOperatorMinHeight
 - Workaround: modify parameter value on font loading
 - Status: fixed in ConT_EXt, but not in luaotfload
 - Solution: adopt existing fix from font-pat.lua
- Asana Math: Incorrect size of display operators
 - Status: fixed in recent versions
 - Solution: update T_EX Live packages
- XITS Math: Incorrect values of some math parameters
 - Status: fixed in recent versions
 - Solution: update TEX Live packages

Problems with OpenType fonts (II)

Font encoding issues

- Incorrect shape of partial sign (upright vs. italic)
 - Problem: Inconsistencies in Unicode font tables
 - Status: correct in some fonts, incorrect in others
 - Solution: unlikely to be fixed anytime soon
- Inconsistent symbol and alphabet coverage
 - Problem: different fonts provide different subsets
 - · some math alphabets missing or incomplete
 - missing alphabets may be substituted or disappear
 - some symbols missing in some fonts or alphabets
 - missing symbols may disappear without trace
 - Status: correct in some fonts, incorrect in others
 - Solution: check your documents and log files

Problems with OpenType fonts (III)

Font loading issues

- Font loading in XeT_EX:
 - uses fontconfig library to locate OpenType fonts
 - may need to edit fonts.conf to add texmf-local tree
 - may need to run fc-cache to refresh font cache
- Font loading in LuaT_EX:
 - uses kpathsea library to locate OpenType fonts
 - uses fonts/opentype to load *.otf fonts (e.g. Euler)
 - uses fonts/truetype to load *.ttc fonts (e.g. Cambria)
 - uses Lua-based font cache (luaotfload)
- Font loading in ConT_EXt:
 - does not use fontconfig or kpathsea libraries
 - uses Lua-based file cache and font cache (luatools)
 - uses fonts.conf to locate font path of system fonts

Examples of testing OpenType math

- 3 choices of T_EX engines + macro packages
 - LuaT_EX with ConT_EXt
 - LuaT_EX with LuaLaT_EX
 - XeT_EX with XeLaT_EX
- 2 choices of comparing the quality
 - Comparing LuaLaT_EX vs. ConT_EXt
 - Comparing LuaLaT_EX vs. XeLaT_EX
- 4-5 choices of OpenType text + math fonts
 - Cambria + Cambria Math
 - XITS + XITS Math
 - TG Pagella + Asana Math
 - TG Pagella + Neo Euler
 - Lucida Bright + Lucida Math

Comparing the quality of OpenType math

- Comparing LuaLaT_EX vs. ConT_EXt:
 - different user interface (unicode-math vs. ConTEXt)
 - similar font loading code (luaotfload vs. ConTEXt)
 - same underlying T_EX engine (LuaT_EX in both cases)
 - same implementation of math algorithms
- Expectations
 - similar input expected to produce similar output
 - BUT: cannot use identical input for test document
 - primarily used for verification of bugs/features

Comparing the quality of OpenType math

- Comparing LuaLaT_EX vs. XeLaT_EX:
 - same user interface (unicode-math in both cases)
 - different font loading code (luaotfload vs. XeT_EX)
 - different underlying T_EX engines (LuaT_EX vs. XeT_EX)
 - · different implementations of math algorithms
- Expectations
 - same input expected to produce different output
 - BUT: same input can be processed unchanged
 - · primarily used for discovery and analysis

Methods of testing OpenType math (I)

- Systematic Testing
 - not enough time to do systematic testing
 - too much tedious work needed for full test
 - too many possibilities / combinations to test
- Sampling vs. Testing
 - create test document for sampling of notations
 - typeset same test document with each font
 - typeset same test document with each engine
 - inspect and compare test results
- Coverage Testing
 - create test document for all math alphabets
 - typeset same test document with each font
 - inspect for missing alphabets or symbols

Methods of testing OpenType math (II)

- Analysis of test results
 - inspect results of test documents for bugs
 - compare results of test documents for quality
- Analyzing large-scale effects
 - large-scale effects easy to find by visual inspection
 - usually caused by problems in engines, fonts, macros
 - usually possible to avoid or fix by workarounds
- Analyzing small-scale effects
 - small-scale effects only visible after fixing large-scale
 - effects can be highlighted in multi-color overlays
 - some effects caused by problems in fonts or macros
 - some effects expected due to engine differences

Results of testing OpenType math (I)

- Original goal
 - study effects on quality of different implementations
 - XeT_EX makes only limited use of OpenType math
 - LuaTEX provides full support of OpenType math
- Observations
 - most large-scale effects caused by bugs (unintentional)
 - remaining small-scale effects smaller than expected
- Next Steps
 - · remaining effects caused by engine differences
 - remaining effects need further detailed study
 - · results of comparison remain inconclusive for now

Results of testing OpenType math (II)

- Additional goal
 - find out how well OpenType math support works
- Observations
 - many problems found during T_EX Live 2010 pretest
 - many problems resolved shortly after release
 - · few problems still remain unresolved for now
- Conclusions
 - LuaT_EX is well supported and has fewer known bugs
 - XeT_EX is essentially unsupported, bugs unresolved
 - macro support is equivalent for both engines now
 - · macro packages are generally well supported
 - · font support varies, some fonts are well supported
 - OpenType math is "bleeding edge" with all its risks