Understanding the æsthetics of math typesetting

Dr. Ulrik Vieth

Stuttgart, Germany

BachoTEX 2008

Quality of math typesetting

- TFX is well-known for its æsthetic quality (in general)
- TEX is well-known for math typesetting (in particular)
- · Quality of math typesetting is almost taken for granted
- Quality of math typesetting is not so well-understood
- Quality depends on multiple factors:
 - Algorithms for math typesetting (built into T_EX)
 - Font metric parameters (built into math fonts)
 - Interaction between algorithms and font metrics

Algorithms & Font metrics

- · Algorithms for math typesetting
 - determine how to do math typesetting
 - built into TEX engines
 - provided by TEX implementors
 - fixed reference implementation (DEK)
 - · defined only once and for all
- Font metrics of math fonts
 - · determine how much spacing or shifting
 - built into math fonts
 - provided by font designers/implementors
 - example implementations (Computer Modern)
 - · needed for each font family, again and again

Documentation & Challenges

- Algorithms are well documented
 - Appendix G of The TeXbook by DEK (algorithmic and mathematical description)
 - Appendix G Illuminated by BJ, EuroTeX 2006 (visual and geometric description)
- Font metrics are not so well understood
 - meaning of parameters is relative clear (in principle)
 - values of parameters remain a mystery (in detail)
 - no documented procedure for setting parameters
- Challenge for font designers:
 - How to set up font metric parameters?
 - Is there a recipe for obtaining good values?

Understanding font metrics

- Contents of font metrics (TFM files)
 - glyph metrics for each glyph
 - ligature and kerning tables
 - table of font metric parameters
- Requirements for font metric parameters
 - typical text font needs 7 parameters (slant, x-height, quad width, interword space)
 - math symbol font needs 22 parameters (fractions, subscripts, superscripts, math axis)
 - math extension font needs 13 parameters (big operators, rule thickness)

Font metrics of math fonts

- some parameters are determined by font design
 - nominal design size, e.g. 10 pt
 - body height and depth, e.g. 7.5 + 2.5 pt
 - ullet ascenders and descenders, e.g. 6.94+1.94 pt
 - x-height of lowercase (σ_5), e.g. 4.31 pt
 - math axis position (σ_{22}) , e.g. 2.5 pt
 - default rule thickness (ξ_8), e.g. 0.4 pt
- other parameters remain to be defined
 - $\sigma_8 \dots \sigma_{12}$ for typesetting fractions
 - $\sigma_{13} \dots \sigma_{19}$ for typesetting indices
 - $\sigma_{20} \dots \sigma_{21}$ for typesetting delimiters
 - $\xi_9 \dots \xi_{13}$ for typesetting big operators

How to determine font metrics?

- Apply scientific methods of theory and experiment
- Analyze available data and facts:
 - Study built-in rules of TEX's algorithms
 - Study built-in rules for boundary cases
 - Study parameters of existing fonts (Computer Modern)
- Formulate a theory:
 - Draw conclusions about possible design principles
 - Formulate a recipe how to calculate parameters
- Conduct experiments:
 - Try to apply conclusions: What are the results?
 - Evaluate the conclusions: Are the results any good?

Understanding design principles

- What are the design principles for spacing of math?
- What is the minimum clearance between elements?
- Analyze built-in rules of TEX's algorithms:
 - Typesetting overlines and underlines
 - Typesetting fractions (boundary case)
 - Typesetting radicals (boundary case)
- Apply conclusions to similar situations:
 - Typesetting big operators
 - Typesetting fractions (general case)

Analyze built-in rules of TEX's algorithms

- Typesetting overlines and underlines
 - overline/underline bar: 1 x rule thickness
 - inside clearance: 3 x rule thickness
 - outside clearance: 1 x rule thickness
- Typesetting fractions (boundary case)
 - fraction bar: 1 x rule thickness
 - minimum clearance (display math): 3 x rule thickness
 - minimum clearance (inline math): 1 x rule thickness
- Typesetting radicals (boundary case)
 - radical bar: 1 x rule thickness
 - inside clearance (display math): ≈ 3 x rule thickness
 - inside clearance (inline math): $\approx 1 \times \text{rule thickness}$
 - outside clearance: 1 x rule thickness

Conclusions about design principles

- assume rule thickness as a basic design parameter
- recipe for minimum clearance in boundary cases
 - 1 x rule thickness in inline math
 - 3 x rule thickness in display math
- recipe for default clearance in general case
 - start from minimum values in boundary case
 - adjust for ascender height or descender depth
 - optionally add extra space if result is not optimal

Typesetting big operators (I)

- · Parameters for big operator spacing
 - ξ_9 , ξ_{10} minimum inside clearance
 - ξ_{11} , ξ_{12} default inside clearance
 - ξ_{13} outside clearance (both sides)
- Applying design principles
 - $\xi_9 = \xi_{10} = 3 \text{ rule_thickness}$
 - $\xi_{11} = \xi_9 + \frac{7}{10} desc_depth$
 - $\xi_{12} = \xi_{10} + \frac{7}{10} asc_height$
 - $\xi_{13} = 3 \text{ rule_thickness}$

Typesetting big operators (II)

- Comparing results (CM vs. calculated values)
 - $\xi_9 = 1.11$ pt vs. $\xi_9 = 1.20$ pt (minimum clearance)
 - $\xi_{10}=1.66$ pt vs. $\xi_{10}=1.20$ pt (minimum clearance)
 - $\xi_{11} = 2.00$ pt vs. $\xi_{11} = 2.56$ pt (default for upper limit)
 - $\xi_{12} = 6.00$ pt vs. $\xi_{12} = 6.06$ pt (default for lower limit)
 - $\xi_{13} = 1.00$ pt vs. $\xi_{13} = 1.20$ pt (outside clearance)
- Evaluating results
 - more systematic approach (symmetric values $\xi_9=\xi_{10}$)
 - small differences in absolute values
 - no big differences in order of magnitude
 - reasonable starting values for new fonts
 - effect of descenders in upper limit (ξ_{11}) may be too big

Typesetting fractions (I)

- Parameters for fractions
 - σ_8 , σ_9 numerator (display/inline)
- σ_{11} , σ_{12} denominator (display/inline)
- Boundary cases for total clearance
 - σ_8 , σ_{11} : 7 rule thickness (display)
 - σ_9 , σ_{12} : 3 rule thickness (inline)
- Applying design principles
 - $\sigma_8 = (\sigma_{22} + \frac{7}{2} \xi_8 + \frac{7}{10} desc_depth)$
 - $\sigma_9 = (\sigma_{22} + \frac{3}{2}\xi_8 + \frac{7}{10} desc_depth)$
 - $\sigma_{11} = -(\sigma_{22} \frac{7}{2} \xi_8 \frac{7}{10} \operatorname{asc_height})$
 - $\sigma_{12} = -(\sigma_{22} \frac{3}{2}\,\xi_8 \frac{7}{10}\,\mathsf{asc_height})$
- Design decision: $\sigma_{10} = \sigma_9$

Typesetting fractions (II)

- Comparing results (CM vs. calculated values)
 - $\sigma_8 = 6.76$ pt vs. $\sigma_8 = 5.26$ pt (numerator display math)
 - $\sigma_9 = 3.93$ pt vs. $\sigma_9 = 4.46$ pt (numerator inline math)
 - $\sigma_{10} = 4.43$ pt vs. $\sigma_{10} = 4.46$ pt (numerator w/o fraction bar)
 - $\sigma_{11}=6.86$ pt vs. $\sigma_{11}=3.76$ pt (denominator display math)
 - $\sigma_{12} = 3.44$ pt vs. $\sigma_{12} = 2.96$ pt (denominator inline math)
- Evaluating results
 - similar construction used in MF sources of CM fonts
 - additional offsets used in CM fonts (2nd order correction)
 - small differences in absolute values (inline math)
 - bigger differences in absolute values (display math)
 - reasonable starting values for new fonts, but very close
 - additional offsets may be also needed for new fonts
 - effect of descenders in nominator (σ_9, σ_{10}) may be too big

Typesetting superscripts and subscripts (I)

- Different design principles apply in this situation: position and alignment matters more than spacing
 - Minimum shift determined by built-in rules:
 Superscripts and subscripts should be properly attached
 - Maximum shift constraint by line spacing:
 Superscripts and subscripts should fit within baseline grid
- Design principles can be deduced from CM fonts
 - Maximum height of superscript is fixed at certain value
 - Position of superscript is calculated relative to maximum
 - Position of subscript is calculated relative to superscript

Typesetting superscripts and subscripts (II)

- Parameters for superscripts
 - σ_{13} superscripts (display math)
 - σ_{14} superscripts (inline math)
 - σ_{15} superscripts (cramped style)
- Parameters for subscripts
 - σ_{16} subscripts (w/o superscripts)
 - σ_{17} subscripts (with superscripts)
- Parameters for boxed formulas
 - σ_{18} superscripts on boxes
 - σ_{19} subscripts on boxes

Typesetting superscripts and subscripts (III)

- Recipe for superscript position
 - start from maximum height
 - adjust for height of superscripts
- Applying the recipe
 - $\sigma_{13} = 9.0 \, \text{pt} \frac{7}{10} \cdot asc_height$
 - $\sigma_{14} = 8.5 \, \text{pt} \frac{7}{10} \cdot asc_height$
 - $\sigma_{15} = 7.5 \, \text{pt} \frac{7}{10} \cdot asc_height$
- Understanding the values
 - size of 10 pt delimiters: 7.5 + 2.5 pt constraint for σ_{15} (cramped style)
 - size of 12 pt delimiters: 8.5 + 3.5 pt constraint for σ_{14} (inline math)

Typesetting superscripts and subscripts (IV)

- Recipe for subscript position
 - start from superscript position
 - adjust for minimum clearance
 - adjust for height of subscripts
 - neglect depths of superscripts
- Applying the recipe
 - $\sigma_{17} = \sigma_{14} 3\xi_8 \frac{7}{10} \cdot asc_height$
 - $\sigma_{16} = \sigma_{17}$ (Design decision!)
- Recipe for alternative approach
 - start from minimum depth, e.g. 2.5 pt
 - fix subscript position at minimum depth

Typesetting superscripts and subscripts (V)

- Comparing results (CM vs. calculated values)
 - $\sigma_{13} = 4.12$ pt vs. $\sigma_{13} = 4.12$ pt (superscript display math)
 - $\sigma_{14} = 3.62$ pt vs. $\sigma_{14} = 3.62$ pt (superscript inline math)
 - $\sigma_{15}=2.88$ pt vs. $\sigma_{15}=2.62$ pt (superscript cramped style)
 - $\sigma_{16}=1.50$ pt vs. $\sigma_{16}=2.42$ pt (subscript w/o superscript)
 - $\sigma_{17} = 2.47$ pt vs. $\sigma_{17} = 2.42$ pt (subscript with superscript)
- Evaluating results
 - similar construction used in MF sources of CM fonts
 - more systematic approach ($\sigma_{16} = \sigma_{17}$)
 - small differences in absolute values
 - no big differences in order of magnitude
 - reasonable starting values for new fonts

Summary and Conclusions

- Challenge for font designers solved (to some degree)
 - Is there a recipe how to set up font metric parameters? Yes!
 - Is there a recipe for obtaining good starting values? Yes!
 - Is there a recipe for obtaining good working values? Maybe?!
 - Do the values obtained need testing? Yes, absolutely!
 - Do the values obtained need adjusting? Yes, probably a bit?!
- Design considerations
 - Basic parameters must always be defined by font designer e.g. x-height (σ_5) , math axis (σ_{22}) , rule thickness (ξ_8)
 - Repcipe must be applied thoughtfully for each design size e.g. scaling factors $\frac{7}{10}$ for 10 pt, $\frac{5}{7}$ for 7 pt, $\frac{5}{5}$ for 5 pt
 - Recipe must be applied individually for each font family e.g. scaling factors 10/7/5 (CM/LM) vs. 10/7.6/6 (TG)

Discussion

- Discussion points / Design decisions
 - Is there too much space for descenders? Yes, maybe?!
 - Conflicting design goals: Equal spacing or equal alignment?
 - w/o correction for descenders: equal spacing
 - with correction for descenders: equal alignment
 - Should there be extra space on generalized fractions? No?!
 - uneven alignment for $\sigma_{10} > \sigma_9$: Compare $\frac{1}{2}$ vs. $\frac{1}{2}$
 - better alignment for $\sigma_{10} = \sigma_9$: Compare $\frac{1}{2}$ vs. $\frac{1}{2}$
 - Should there be different placement of subscripts? No?!
 - uneven alignment for $\sigma_{16} < \sigma_{17}$: Compare x_0 vs. x_0^2
 - better alignment for $\sigma_{16} = \sigma_{17}$: Compare x_0 vs. x_0^2

