
LuaTEX as TEX successor

David Kastrup1

May 2, 2008

1dak@gnu.org



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood

I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father

I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)

I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation

I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age

I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth

I It broke the path to tell people about computer science, and
now is being judged by the laws that it helped create



Case summary

Friends, Romannumerals, Countrymen, lend me your ears
I come to defend TEX, not to praise it

I TEX had a terribly hard childhood
I Single father
I Artificial mother tongue (stripped down Pascal)
I Never got to know dynamic allocation
I No family or friends of its own age
I There was no computer science or laws for it in its youth
I It broke the path to tell people about computer science, and

now is being judged by the laws that it helped create



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Managable problems

I Simplest measures such as \boxstretch, \boxfilstretch,
\boxshrink etc are not available.

I Boxes can’t reliably be deconstructed (\special, single
characters etc. can’t be removed, boxes can only be taken
apart from the end)

I Variables that TEX employs for decisions are partly unavailable
(in some cases because of system-dependent rounding)

I Peculiarities like the loss of the first line’s baseline (for \vtop)
by whatsits, \splittopskip0pt and other.

LuaTEX: Partly done, certainly doable.



Problems of the macro language

I Only global register pools indexed by number are available.
There are no lexically local variables, the grouping structure
does not match the macro structure.

I macro arguments get \catcode too soon, complex patterns
are not easily parseable. Maybe \lazy\def would help?

I Implementing regular input languages is hard.
LuaTEX: Some issues appear addressable, but the solutions do not

interact closely with TEX regarding the data types and
structures.



Problems of the macro language

I Only global register pools indexed by number are available.
There are no lexically local variables, the grouping structure
does not match the macro structure.

I macro arguments get \catcode too soon, complex patterns
are not easily parseable. Maybe \lazy\def would help?

I Implementing regular input languages is hard.
LuaTEX: Some issues appear addressable, but the solutions do not

interact closely with TEX regarding the data types and
structures.



Problems of the macro language

I Only global register pools indexed by number are available.
There are no lexically local variables, the grouping structure
does not match the macro structure.

I macro arguments get \catcode too soon, complex patterns
are not easily parseable. Maybe \lazy\def would help?

I Implementing regular input languages is hard.
LuaTEX: Some issues appear addressable, but the solutions do not

interact closely with TEX regarding the data types and
structures.



Problems of the macro language

I Only global register pools indexed by number are available.
There are no lexically local variables, the grouping structure
does not match the macro structure.

I macro arguments get \catcode too soon, complex patterns
are not easily parseable. Maybe \lazy\def would help?

I Implementing regular input languages is hard.

LuaTEX: Some issues appear addressable, but the solutions do not
interact closely with TEX regarding the data types and
structures.



Problems of the macro language

I Only global register pools indexed by number are available.
There are no lexically local variables, the grouping structure
does not match the macro structure.

I macro arguments get \catcode too soon, complex patterns
are not easily parseable. Maybe \lazy\def would help?

I Implementing regular input languages is hard.
LuaTEX: Some issues appear addressable, but the solutions do not

interact closely with TEX regarding the data types and
structures.



Interoperation problems

TEX

I only knows its own font formats, metrics and ligatures.
I does not talk to graphic programs
I can’t trigger reformatting of external material.

LuaTEX: Has the basics for understanding OpenType, talks with mplib,
can call external programs.



Interoperation problems

TEX
I only knows its own font formats, metrics and ligatures.

I does not talk to graphic programs
I can’t trigger reformatting of external material.

LuaTEX: Has the basics for understanding OpenType, talks with mplib,
can call external programs.



Interoperation problems

TEX
I only knows its own font formats, metrics and ligatures.
I does not talk to graphic programs

I can’t trigger reformatting of external material.
LuaTEX: Has the basics for understanding OpenType, talks with mplib,

can call external programs.



Interoperation problems

TEX
I only knows its own font formats, metrics and ligatures.
I does not talk to graphic programs
I can’t trigger reformatting of external material.

LuaTEX: Has the basics for understanding OpenType, talks with mplib,
can call external programs.



Interoperation problems

TEX
I only knows its own font formats, metrics and ligatures.
I does not talk to graphic programs
I can’t trigger reformatting of external material.

LuaTEX: Has the basics for understanding OpenType, talks with mplib,
can call external programs.



Algorithmic problems

I TEX is either perfect, or deficient: paragraphs are optimized
globally, but the vertical breaks are “local best fit” without
feedback to horizontal breaks or future pages.

I TEX has no sane concept for asynchronous user code. \output
is shielded with the expedient of additional grouping and has
no multithreading concept.

I TEX has no possibilities for making use of side-effect free
user-defined code. Consequently, user-defined code can’t be
used in several speculative contexts.

LuaTEX: Does not touch TEX’s algorithms here, only taps into them.
Implications of \output, CoCo and coroutines interesting.
Does not mesh with TEX.



Algorithmic problems

I TEX is either perfect, or deficient: paragraphs are optimized
globally, but the vertical breaks are “local best fit” without
feedback to horizontal breaks or future pages.

I TEX has no sane concept for asynchronous user code. \output
is shielded with the expedient of additional grouping and has
no multithreading concept.

I TEX has no possibilities for making use of side-effect free
user-defined code. Consequently, user-defined code can’t be
used in several speculative contexts.

LuaTEX: Does not touch TEX’s algorithms here, only taps into them.
Implications of \output, CoCo and coroutines interesting.
Does not mesh with TEX.



Algorithmic problems

I TEX is either perfect, or deficient: paragraphs are optimized
globally, but the vertical breaks are “local best fit” without
feedback to horizontal breaks or future pages.

I TEX has no sane concept for asynchronous user code. \output
is shielded with the expedient of additional grouping and has
no multithreading concept.

I TEX has no possibilities for making use of side-effect free
user-defined code. Consequently, user-defined code can’t be
used in several speculative contexts.

LuaTEX: Does not touch TEX’s algorithms here, only taps into them.
Implications of \output, CoCo and coroutines interesting.
Does not mesh with TEX.



Algorithmic problems

I TEX is either perfect, or deficient: paragraphs are optimized
globally, but the vertical breaks are “local best fit” without
feedback to horizontal breaks or future pages.

I TEX has no sane concept for asynchronous user code. \output
is shielded with the expedient of additional grouping and has
no multithreading concept.

I TEX has no possibilities for making use of side-effect free
user-defined code. Consequently, user-defined code can’t be
used in several speculative contexts.

LuaTEX: Does not touch TEX’s algorithms here, only taps into them.
Implications of \output, CoCo and coroutines interesting.
Does not mesh with TEX.



Algorithmic problems

I TEX is either perfect, or deficient: paragraphs are optimized
globally, but the vertical breaks are “local best fit” without
feedback to horizontal breaks or future pages.

I TEX has no sane concept for asynchronous user code. \output
is shielded with the expedient of additional grouping and has
no multithreading concept.

I TEX has no possibilities for making use of side-effect free
user-defined code. Consequently, user-defined code can’t be
used in several speculative contexts.

LuaTEX: Does not touch TEX’s algorithms here, only taps into them.
Implications of \output, CoCo and coroutines interesting.
Does not mesh with TEX.



Task at hand

If your ultimate goal is to produce a set of files in a different format
that can be produced by GhostScript, take a look at the tightpage
option of the preview package. This will embed the page dimensions
into the PostScript code, obliterating the need to use the -E -i
options to Dvips. You can then produce all image files with a single
run of GhostScript from a single PostScript file for all images at once.
The tightpage option requires setting the dvips option as well.

1

2

3

4

5

6

7

Various options exist that will pass TEX dimensions and other infor-
mation about the respective shipped out material (including descen-
der size) into the log file, where external applications might make
use of it.

8

9

10

11

The possibility for generating a whole set of graphics with a single run
of LATEX, Dvips, and GhostScript increases both speed and robustness
of applications. It is to be hoped that applications like LATEX2HTML
will be able to make use of this package in future.

12

13

14

15

16



Current line number implementations

Implementation with lineno.sty:

1. Replaces all interline penalties with forced page breaks.
2. This triggers a special output routine placed before the

principal output routine.
3. This special routine places the line numbers and reinserts the

correct penalties.
4. The normal Output routine is called.
5. A label-like multipass mechanism resets line numbers at the

start of the page.



Current line number implementations

Implementation with lineno.sty:
1. Replaces all interline penalties with forced page breaks.

2. This triggers a special output routine placed before the
principal output routine.

3. This special routine places the line numbers and reinserts the
correct penalties.

4. The normal Output routine is called.
5. A label-like multipass mechanism resets line numbers at the

start of the page.



Current line number implementations

Implementation with lineno.sty:
1. Replaces all interline penalties with forced page breaks.
2. This triggers a special output routine placed before the

principal output routine.

3. This special routine places the line numbers and reinserts the
correct penalties.

4. The normal Output routine is called.
5. A label-like multipass mechanism resets line numbers at the

start of the page.



Current line number implementations

Implementation with lineno.sty:
1. Replaces all interline penalties with forced page breaks.
2. This triggers a special output routine placed before the

principal output routine.
3. This special routine places the line numbers and reinserts the

correct penalties.

4. The normal Output routine is called.
5. A label-like multipass mechanism resets line numbers at the

start of the page.



Current line number implementations

Implementation with lineno.sty:
1. Replaces all interline penalties with forced page breaks.
2. This triggers a special output routine placed before the

principal output routine.
3. This special routine places the line numbers and reinserts the

correct penalties.
4. The normal Output routine is called.

5. A label-like multipass mechanism resets line numbers at the
start of the page.



Current line number implementations

Implementation with lineno.sty:
1. Replaces all interline penalties with forced page breaks.
2. This triggers a special output routine placed before the

principal output routine.
3. This special routine places the line numbers and reinserts the

correct penalties.
4. The normal Output routine is called.
5. A label-like multipass mechanism resets line numbers at the

start of the page.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.
4. In the same context \label-commands referencing line

numbers are expanded.
LuaTEX: Node list deconstruction/manipulation is most likely the

easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.
4. In the same context \label-commands referencing line

numbers are expanded.
LuaTEX: Node list deconstruction/manipulation is most likely the

easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.
4. In the same context \label-commands referencing line

numbers are expanded.
LuaTEX: Node list deconstruction/manipulation is most likely the

easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.

4. In the same context \label-commands referencing line
numbers are expanded.

LuaTEX: Node list deconstruction/manipulation is most likely the
easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.
4. In the same context \label-commands referencing line

numbers are expanded.

LuaTEX: Node list deconstruction/manipulation is most likely the
easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special
“context” is defined that assembles a parallel column of
‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will
be translated into glyphs either in the context of the output
routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.
4. In the same context \label-commands referencing line

numbers are expanded.
LuaTEX: Node list deconstruction/manipulation is most likely the

easiest way. “Migration” is not a concept in LuaTEX, but could
be interesting.



Synchronized texts. . .



Footnotes in running paragraphs

ösen Neigungen zusammen.d Methodisch bedeutsam ist abere wieder die Ge-
winnung des Endpunktes <für die Gegenwart>. Dieserf muß in einer absoluten
und endgültigen Synthese liegen, die eben deshalb nicht aus der natürlichen<,
ihrem Wesen nach relativistischen> Lebensbewegung gstammen oder hervor-

a In A folgt: wesentlich b A: Staatsorganismen,
c–c A: zukünftige und gegenwärtige

d–d A: Dass er dabei materiell zu einer sehr konservativen, mittelalterlich ständisch
gefärbten und zugleich wieder real-politisch und national gesinnten Staatsauffas-
sung kommt, ist eine Sache für sich. Auch dass die Konstruktion der Entwick-
lung, die im Grunde immer nur mit einem sehr biologisch getönten Lebensbe-
griffe arbeitet, kein logisches Fortschrittsprinzip hat, sondern an dessen Stelle
sich auf die Vorsehung beruft, ist eine der besonderen Ausführungen des Grund-
gedankens. Es gibt hier nicht viel mehr als Spielereien mit völlig unzulänglichen
historischen Kenntnissen.

e A: erst f A: Er
g–g A: mit ihrem unaustilglichen Realismus und Relativismus stammen könne



Nested footnotes
<dabei> ist, daß alles das immer nur Einzelentwicklungskreise sindb und daß
der Fortgang zu einer universalen Verknüpfung all dieser Kreise mit dieser Me-

en und Konsequenzen recht interessant, ganz abgesehen von ihrem materiellen Inhalt.
Hier über das Problem der Geschichtsphilosophie und des Entwicklungsbegriffes Bd.
I S. V und c97. Derc alles durchdringende Bewegungsbegriff I 5, 49 f., 30, 179, 251.
Universalgeschichte und Vorsehung <I> 79, 147, 95 f. Zusammenfassung von Smith,
Montesquieu und Burke <I> 86. Mangel eines archimedischen Punktes <für Natur und
(offenbarungslose) Geschichte I> 35 f. Die Tendenz des Ganzen dIII 328: „Den Staat
ideenweise (d. h. als Synthese aus Gegensätzen und intuitiv) begreifen heißt ihn für die
Gegenwart beseelen, beleben, mit Religion tränken.“d 120 <Damit ist auch hier der Zu-
sammenhang der Historie und der gegenwärtigen Kultursynthese scharf behauptet.>

Die Ablösung Burkes durch De Bonald, Verm. Schriftene I 311 ff. Wichtig und in-
teressant istf der „Briefwechsel mit Gentz <1800–1829“, Stuttgart 1857. – Außerdem
hat mir eine lehrreiche Berliner Dissertation von Georg Strauß über „Die Methode A.
Müllers in der Kritik des 19. und 20. Jahrhunderts“121 vorgelegen>.

a–a A: Romantiker hat dann weiterhin in die Ferne geführt, indische, persische, spani-
sche, französische, englische Geschichte und Geistesentwicklung den Forschern
als Gegenstände unterbreitet. Es ist hier nicht möglich, all dem ins einzelne zu
folgen und ebenso unmöglich, die mannigfachen Fortwirkungen H. W. Riehl
und Gustav Freytag, bis Radowitz und Gierke, Roscher und Knies, Heinrich Leo
und Stahl, Boisserée und Schnaase usw. zu schildern, wobei das Hauptinteresse
in den jeweiligen Modifikationen läge.

b A: sind, c–c A: 97; der
d–d A: III, 322. Den „Staat ideenweise zu begreifen“ heisst ihn für die Gegenwart

„beleben, beseelen, mit Religion tränken.“
e A: Schr. f In A folgt: auch

120 Vgl. Adam Müller: Elemente der Staatskunst, Dritter Theil (1809), S. 238: „Erin-
nern Sie sich aber, daß es die Grundbestrebung war, den gesammten Staat und al-
le seine Institute ideenweise zu ergreifen – d. h. ihn zu beleben, zu beseelen, mit
Religion zu tränken.“



Tough stuff. . .



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.

I For example, a color context would have the current color as a
local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Contexts

I A context is a programmatic entity with its own control flow
and local variables.

I Example: an output context continuously requests material
from the main vertical list and insertions. Collections of page
matter are then scored (currently this happens using
\brokenpenalty, \widowpenalty, \clubpenalty,
\badness and others).

I The output context thus is coupled with the migration of page
material from the vertical list to the current page.

I Other contexts may be coupled with other migrations.
I For example, a color context would have the current color as a

local variable for material migrating to the page and into
insertions.

LuaTEX: Pretty much implementable with coroutines. But: data
structure locality? No TEX control flow.



Migrations

I Actions get triggered when objects of a class migrate from one
list to another.

I Migrations can be penalized.
I When different migrations are possible, the combination with

the smallest total penalties survives.
I Line breaking is a special example of penalized breakpoints

during the migration of a horizontal into a vertical list.
LuaTEX: Provides some hooks/callbacks, but those are not associated

with the data itself.



Migrations

I Actions get triggered when objects of a class migrate from one
list to another.

I Migrations can be penalized.

I When different migrations are possible, the combination with
the smallest total penalties survives.

I Line breaking is a special example of penalized breakpoints
during the migration of a horizontal into a vertical list.

LuaTEX: Provides some hooks/callbacks, but those are not associated
with the data itself.



Migrations

I Actions get triggered when objects of a class migrate from one
list to another.

I Migrations can be penalized.
I When different migrations are possible, the combination with

the smallest total penalties survives.

I Line breaking is a special example of penalized breakpoints
during the migration of a horizontal into a vertical list.

LuaTEX: Provides some hooks/callbacks, but those are not associated
with the data itself.



Migrations

I Actions get triggered when objects of a class migrate from one
list to another.

I Migrations can be penalized.
I When different migrations are possible, the combination with

the smallest total penalties survives.
I Line breaking is a special example of penalized breakpoints

during the migration of a horizontal into a vertical list.

LuaTEX: Provides some hooks/callbacks, but those are not associated
with the data itself.



Migrations

I Actions get triggered when objects of a class migrate from one
list to another.

I Migrations can be penalized.
I When different migrations are possible, the combination with

the smallest total penalties survives.
I Line breaking is a special example of penalized breakpoints

during the migration of a horizontal into a vertical list.
LuaTEX: Provides some hooks/callbacks, but those are not associated

with the data itself.



Objects

I are elements of the various horizontal and vertical lists.

I can belong to different classes.
I classes can be added as well as extended.
I objects can have their own contexts for particular migrations.

LuaTEX: TEX data structures are basically foreign.



Objects

I are elements of the various horizontal and vertical lists.
I can belong to different classes.

I classes can be added as well as extended.
I objects can have their own contexts for particular migrations.

LuaTEX: TEX data structures are basically foreign.



Objects

I are elements of the various horizontal and vertical lists.
I can belong to different classes.
I classes can be added as well as extended.

I objects can have their own contexts for particular migrations.
LuaTEX: TEX data structures are basically foreign.



Objects

I are elements of the various horizontal and vertical lists.
I can belong to different classes.
I classes can be added as well as extended.
I objects can have their own contexts for particular migrations.

LuaTEX: TEX data structures are basically foreign.



Objects

I are elements of the various horizontal and vertical lists.
I can belong to different classes.
I classes can be added as well as extended.
I objects can have their own contexts for particular migrations.

LuaTEX: TEX data structures are basically foreign.



Optimization

Global optimization leads to combinatorical explosion of run time.
Countermeasures:

1. reduction of interdependencies by separated contexts
2. serialization by tying the optimization to migrations
3. limited backfeed, preferring multiple passes.
4. make do with less than full optimization.



Optimization

Global optimization leads to combinatorical explosion of run time.
Countermeasures:
1. reduction of interdependencies by separated contexts

2. serialization by tying the optimization to migrations
3. limited backfeed, preferring multiple passes.
4. make do with less than full optimization.



Optimization

Global optimization leads to combinatorical explosion of run time.
Countermeasures:
1. reduction of interdependencies by separated contexts
2. serialization by tying the optimization to migrations

3. limited backfeed, preferring multiple passes.
4. make do with less than full optimization.



Optimization

Global optimization leads to combinatorical explosion of run time.
Countermeasures:
1. reduction of interdependencies by separated contexts
2. serialization by tying the optimization to migrations
3. limited backfeed, preferring multiple passes.

4. make do with less than full optimization.



Optimization

Global optimization leads to combinatorical explosion of run time.
Countermeasures:
1. reduction of interdependencies by separated contexts
2. serialization by tying the optimization to migrations
3. limited backfeed, preferring multiple passes.
4. make do with less than full optimization.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.
I Programming a full TEX clone on such a platform appears

possible, but pointless.
I Decomposition or analysis of several variants can be expensive.

LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.
I Programming a full TEX clone on such a platform appears

possible, but pointless.
I Decomposition or analysis of several variants can be expensive.

LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking

I quite a bit of potential for infinite or almost infinite loops and
calculations.

I Programming a full TEX clone on such a platform appears
possible, but pointless.

I Decomposition or analysis of several variants can be expensive.
LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.

I Programming a full TEX clone on such a platform appears
possible, but pointless.

I Decomposition or analysis of several variants can be expensive.
LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.
I Programming a full TEX clone on such a platform appears

possible, but pointless.

I Decomposition or analysis of several variants can be expensive.
LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.
I Programming a full TEX clone on such a platform appears

possible, but pointless.
I Decomposition or analysis of several variants can be expensive.

LuaTEX: No relevant hooks or concepts.



Disadvantages

I higher memory impact since decisions need to remain
revertible to some degree.

I higher computational resources because of backtracking
I quite a bit of potential for infinite or almost infinite loops and

calculations.
I Programming a full TEX clone on such a platform appears

possible, but pointless.
I Decomposition or analysis of several variants can be expensive.

LuaTEX: No relevant hooks or concepts.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.

I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.

I need not be a single layer: instead of TEX’s Pascal/TEX-macro
layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?

I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?

I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.

I Low-level implementation of fast algorithms on custom data
structures should be possible

I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible

I Avoidance of unnecessary language features.



Implementation language

I should offer natural expressivity for lists, TEX-typical strings
and token lists.

I should make the required mechanism natively available.
I automatic garbage collection.
I need not be a single layer: instead of TEX’s Pascal/TEX-macro

layering a more tiered concept like
C/Scheme/TEX-core/TEX-Macros would be possible.

I Problematic: Coroutines. Smalltalk? Ada?
I Problematic: I/O (memory for tentative I/O)?
I Combination with low-level languages like C desirable.
I Low-level implementation of fast algorithms on custom data

structures should be possible
I Avoidance of unnecessary language features.



Evaluating LuaTEX

I Data structures of TEX are foreign to Lua – Userdata concept
helps.

I TEX’s grouping structure does not have a useful equivalent in
Lua

I catcoded strings have no useful equivalent
I It is unclear how Coroutines and local variables will interplay

between TEX and Lua.



Evaluating LuaTEX

I Data structures of TEX are foreign to Lua – Userdata concept
helps.

I TEX’s grouping structure does not have a useful equivalent in
Lua

I catcoded strings have no useful equivalent
I It is unclear how Coroutines and local variables will interplay

between TEX and Lua.



Evaluating LuaTEX

I Data structures of TEX are foreign to Lua – Userdata concept
helps.

I TEX’s grouping structure does not have a useful equivalent in
Lua

I catcoded strings have no useful equivalent

I It is unclear how Coroutines and local variables will interplay
between TEX and Lua.



Evaluating LuaTEX

I Data structures of TEX are foreign to Lua – Userdata concept
helps.

I TEX’s grouping structure does not have a useful equivalent in
Lua

I catcoded strings have no useful equivalent
I It is unclear how Coroutines and local variables will interplay

between TEX and Lua.



Lua Language features

I Lexical scope

I Closures
I Coroutines
I Numeric data type is IEEE double, strict superset of both

32bit integers and 14.16 fixpoint numbers



Lua Language features

I Lexical scope
I Closures

I Coroutines
I Numeric data type is IEEE double, strict superset of both

32bit integers and 14.16 fixpoint numbers



Lua Language features

I Lexical scope
I Closures
I Coroutines

I Numeric data type is IEEE double, strict superset of both
32bit integers and 14.16 fixpoint numbers



Lua Language features

I Lexical scope
I Closures
I Coroutines
I Numeric data type is IEEE double, strict superset of both

32bit integers and 14.16 fixpoint numbers



Making use of language features

Control Structures Incomplete control structures are not usable.
This means that the flow control of the
application/format needs to be transferred from TEX
to Lua to gain benefits.

Lexical scoping Making use of scoped variables means that the
grouping structure of TEX should not get used. Not
feasible with existing formats.

Data types Don’t correspond well with TEX’s data structures, but
then what does? Userdata helps, but grouping?

Metatables Apply for Userdata (one per value). Can be used for
operator overloading and other stuff.

Modules possibly nice.



Making use of language features

Control Structures Incomplete control structures are not usable.
This means that the flow control of the
application/format needs to be transferred from TEX
to Lua to gain benefits.

Lexical scoping Making use of scoped variables means that the
grouping structure of TEX should not get used. Not
feasible with existing formats.

Data types Don’t correspond well with TEX’s data structures, but
then what does? Userdata helps, but grouping?

Metatables Apply for Userdata (one per value). Can be used for
operator overloading and other stuff.

Modules possibly nice.



Making use of language features

Control Structures Incomplete control structures are not usable.
This means that the flow control of the
application/format needs to be transferred from TEX
to Lua to gain benefits.

Lexical scoping Making use of scoped variables means that the
grouping structure of TEX should not get used. Not
feasible with existing formats.

Data types Don’t correspond well with TEX’s data structures, but
then what does? Userdata helps, but grouping?

Metatables Apply for Userdata (one per value). Can be used for
operator overloading and other stuff.

Modules possibly nice.



Making use of language features

Control Structures Incomplete control structures are not usable.
This means that the flow control of the
application/format needs to be transferred from TEX
to Lua to gain benefits.

Lexical scoping Making use of scoped variables means that the
grouping structure of TEX should not get used. Not
feasible with existing formats.

Data types Don’t correspond well with TEX’s data structures, but
then what does? Userdata helps, but grouping?

Metatables Apply for Userdata (one per value). Can be used for
operator overloading and other stuff.

Modules possibly nice.



Making use of language features

Control Structures Incomplete control structures are not usable.
This means that the flow control of the
application/format needs to be transferred from TEX
to Lua to gain benefits.

Lexical scoping Making use of scoped variables means that the
grouping structure of TEX should not get used. Not
feasible with existing formats.

Data types Don’t correspond well with TEX’s data structures, but
then what does? Userdata helps, but grouping?

Metatables Apply for Userdata (one per value). Can be used for
operator overloading and other stuff.

Modules possibly nice.



Distributed human workflow

TEX expertise sparse resource

TEX programming requires expertise for small tasks
TEX data structures hell on wheels
TEX text processing catcodes all around
Consequence Move complete data and program flow to Lua. Use

TEX only for processing fragments.



Distributed human workflow

TEX expertise sparse resource
TEX programming requires expertise for small tasks

TEX data structures hell on wheels
TEX text processing catcodes all around
Consequence Move complete data and program flow to Lua. Use

TEX only for processing fragments.



Distributed human workflow

TEX expertise sparse resource
TEX programming requires expertise for small tasks
TEX data structures hell on wheels

TEX text processing catcodes all around
Consequence Move complete data and program flow to Lua. Use

TEX only for processing fragments.



Distributed human workflow

TEX expertise sparse resource
TEX programming requires expertise for small tasks
TEX data structures hell on wheels
TEX text processing catcodes all around

Consequence Move complete data and program flow to Lua. Use
TEX only for processing fragments.



Distributed human workflow

TEX expertise sparse resource
TEX programming requires expertise for small tasks
TEX data structures hell on wheels
TEX text processing catcodes all around
Consequence Move complete data and program flow to Lua. Use

TEX only for processing fragments.



Refactoring projects

Standalone applications Best chance to change all around,
obliterating TEX expert requirements for many tasks.

Formats Hard to change consistently because data structures
and control flow are integrated in TEX and subject to
grouping structure.

TEX, the Program Rewrite the paragraph optimization framework
to be a generally useful mechanism available from
Lua?

TEX, the code base Pascal is current “extension language” of TEX.
Move part of that to Lua? Data structures?



Refactoring projects

Standalone applications Best chance to change all around,
obliterating TEX expert requirements for many tasks.

Formats Hard to change consistently because data structures
and control flow are integrated in TEX and subject to
grouping structure.

TEX, the Program Rewrite the paragraph optimization framework
to be a generally useful mechanism available from
Lua?

TEX, the code base Pascal is current “extension language” of TEX.
Move part of that to Lua? Data structures?



Refactoring projects

Standalone applications Best chance to change all around,
obliterating TEX expert requirements for many tasks.

Formats Hard to change consistently because data structures
and control flow are integrated in TEX and subject to
grouping structure.

TEX, the Program Rewrite the paragraph optimization framework
to be a generally useful mechanism available from
Lua?

TEX, the code base Pascal is current “extension language” of TEX.
Move part of that to Lua? Data structures?



Refactoring projects

Standalone applications Best chance to change all around,
obliterating TEX expert requirements for many tasks.

Formats Hard to change consistently because data structures
and control flow are integrated in TEX and subject to
grouping structure.

TEX, the Program Rewrite the paragraph optimization framework
to be a generally useful mechanism available from
Lua?

TEX, the code base Pascal is current “extension language” of TEX.
Move part of that to Lua? Data structures?



Interface problems

I Text/Tokenlists

I Tokenlists/Lua Code
I Strings/TEX Code
I Boxes/Node list manipulation



Interface problems

I Text/Tokenlists
I Tokenlists/Lua Code

I Strings/TEX Code
I Boxes/Node list manipulation



Interface problems

I Text/Tokenlists
I Tokenlists/Lua Code
I Strings/TEX Code

I Boxes/Node list manipulation



Interface problems

I Text/Tokenlists
I Tokenlists/Lua Code
I Strings/TEX Code
I Boxes/Node list manipulation



Programming features shortlist

Feature Lua TEX
Scope lexical with closures sickly dynamic

Code execution byte code token list processing
Loops nestable scopes unnested,

mouth/stomach
chimera

List access O(lg(lg(n))) O(n) if you are really
good

Indexing reasonable Hash, ex-
ception for numeric

bad hash particularly
for numeric data

Coroutines elegant Coroutines?
Language design minimalist Language design?



And now for something completely different(?)

Ampulex compressa is a wasp that has evolved to tackle roaches,
insert a stinger into their brains and disable their escape reflexes.
This lets the wasp use the roach’s antennae to steer the roach to
its lair, where it can lay its egg in it.
The roach is no longer able to move on its own. When the egg
layed on the underside of the roach hatches, the larva enters the
host roach and feeds on its organs for eight days. It makes a
cocoon and pupates. After 4 weeks it emerges from the roach as a
full-grown wasp.
(use a search engine on “zombie cockroach”).


	Executive case summary
	Problems of TeX
	Document examples
	Line numbers
	More complex Problems

	Concepts
	Evaluating LuaTeX

